TAMPERE UNIVERSITY OF TECHNOLOGY
Ragnar Granit Institute

71210 Bioelektroniikka - Bioelectromagnetism

Laskuharjoitus 6 - Exercise 6, 27.10.2004

1. The body surface ECG is measured using e.g. 26 to 256 electrodes. Figure 1 represents voltages of a normal body surface ECG measured at the end of a QRS complex. What can you say about the nature of the source according to this map?

Figure 1. Anterior body surface map (BSM).
2. A patient has left bundle branch block (LBBB) 2 cm from the AV node. The activation continues over the damaged 0.5 cm long area in the myocardium. How long time will the action pulse need from the AV-node to the end of the 6 cm long bundle if the propagation velocities are $1.2-4 \mathrm{~ms}$ and $0.3-1 \mathrm{~m} / \mathrm{s}$ in the bundle and in the myocardium respectively (worst case)? (Answer: 15 ms and 30,4ms)
3. Figure 3 represents a model for calculating extracellular voltage drop across plane wave depolarization. Derive the equation for the potential across a plane depolarization wave using the model.

Model used for calculating extracellular voltage drop across a plane depolarization wave. The batteries represent the membrane potential. The values of r_{1} and r_{u} depend on the angle between the propagation direction and the fiber direction

Figure 3 A model for calculating extracellular voltage drop across plane wave depolarization
4. Calculate the intra and extracellular resistances using the equation in the previous exercise, if $\mathrm{V}_{\mathrm{ot}}=16 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{ol}}=56 \mathrm{mV}$. Following equation also holds

$$
\frac{v_{t}}{v_{l}}=\frac{\sqrt{r_{i l}+r_{o l}}}{\sqrt{r_{i t}+r_{o t}}}
$$

Total resistances in longitudal and transversal directions to the fibers are $200 \Omega \mathrm{~cm}$ and $630 \Omega \mathrm{~cm}$, respectively. (Answer: $r_{\mathrm{il}}=357 \Omega \mathrm{~cm}, r_{\mathrm{it}}=3938 \Omega \mathrm{~cm}, r_{\mathrm{ol}}=455 \Omega \mathrm{~cm}$, $r_{\mathrm{ot}}=750 \Omega \mathrm{~cm}$)
5. Figure 2 shows epicardial potentials measured 10 ms after stimulation. What are the propagation velocities in longitudal $\left(=v_{l}\right)$ and transverse $\left(=v_{t}\right)$ directions to the fiber orientation and the ratio of the velocities?

Kuva 3. Potential field $(m V) 10$ msec after stimulation. The depolarization wave has moved to the position shown by the heavy curve, which is the $10-\mathrm{msec}$ isochrone in Figure 1. Note the asymmetry of the potentials outside the wavefront, the positive potentials ahead of the wave along the fiber direction, and the-negative potentials in the transverse direction.

Figure 2. Epicardial potential measured 10 ms after the stimulation

