TAMPERE UNIVERSITY OF TECHNOLOGY

Ragnar Granit Institute

71210 Bioelektroniikka - Bioelectromagnetism

Laskuharjoitus 8 - Exercise 8, 17.11.2004

1. Three electrodes $(a, b$ and $c)$ are on the surface of a volume conductor. The lead vectors for a dipole defined at the three locations are:

$$
\begin{aligned}
& \overline{c_{a}}=\bar{i}+2 \bar{j}+\bar{k} \\
& \overline{c_{b}}=3 \bar{i}+7 \bar{j}+2 \bar{k} \\
& \overline{c_{c}}=7 \bar{i}+5 \bar{j}+4 \bar{k}
\end{aligned}
$$

Last week you defined the ratio of the voltages measured between the electrodes a and b to a and c for a dipole oriented in x direction. This time, what is the lead vector for a measurement taken from the electrodes A\&B to C?
2. In the Wilson network shown below, all resistors are $2 \mathrm{k} \Omega$. At the time of the Rpeak. the voltages at $\mathrm{LA}=67 \mathrm{mV}$, $\mathrm{RA}=62 \mathrm{mV}$ and $\mathrm{LL}=65 \mathrm{mV}$.
a) Compute the voltages at $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and T .
b) What are the current values $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} ?

3. During a QRS-complex at some time instant t the following potentials were measured:

III-lead	$+1,1 \mathrm{mV}$
aVR-lead	$-3,4 \mathrm{mV}$
V1 -lead	$-3,5 \mathrm{mV}$

Approximate the potentials in the leads I, II, aVL, aVF, V6 and V4.
4. In Figure 1 an ECG-lead system measuring dipoles parallel to X -axis is depicted. a) Determine the value of the resistor X when the resistance $5 R$ at the point E is not connected.
b) If the $5 R$ is connected, what is the value of the resistor X ?
5. Using his model Ernest Frank measured $4.3 \mathrm{mV}, 2.8 \mathrm{mV}$ and 5.0 mV readings between the points C and D, P and G , and P and D on the 6 th level in his model. Determine the potentials between the points E and A
a) on the same level, b) on level 4 .

Image space measured by Frank; see Bioelectromagnetism Chpt 11 - Figures 14, 15, 16 and 17.
6. Figure 2 a) represents a normal QRS-complex measured from the limb lead I. Calculate (actually, just approximate) the altered QRS-complex if hypertrophy (shown in Fig. 2 b) of the left ventricle generates an additional dipolar moment starting 45 ms after the beginning of the QRS and lasts 35 ms . The dipole moment strength is 15 mAm and it is linearly decreasing to zero during the last 15 ms . When the activation spreads in the hypertrophic section, the direction of this dipole on the frontal plane will change from 70 (caudal on the sinister side) to 90 , i.e., to cranial. Use the Einthoven triangle when approximating the lead sensitivity.

Figure 2. a) QRS-complex. b) Hypertrophy of the left ventricle

