Computational Modeling of the Cardiovascular System

Modeling of Electrical Conduction in Cardiac Tissue

Frank B. Sachse, University of Utah

Experimental Studies of Cardiac Electrical Conduction

Measurement methods

- Electrode arrays: Extracellular voltages (similar ECG measurements on body surface) Sampling rate up to several kHz Channels up to 2000
- Optical: Transmembrane voltages CCD-camera Photodiode array

Preparations

- Cell strands Purkinje fibers
- Small muscles papillary muscle, trabeculae
- Sections wedge preparations from ventricles
- Atria/ventricle
- Whole heart

Color-coded visualization of extracellular voltages measured on surface of canine ventricles

in vivo/in vitro

Experimental Studies in Papillary Muscle

Species: Adult New Zealand White rabbits (1.5-3.0 kg)

- 1. Anti-coagulated with heparin and anesthetized with pentobarbital
- 2. Hearts are rapidly excised and moved to dissection tray
- 3. Retrograde perfusion via aorta with modified Tyrode solution
- 4. Opening of right ventricle
- 5. Selection and excision of papillary muscle including onset of chordae tendinae **Criteria**: Small diameter, large length, unramified
- 6. Transfer to horizontal flow-through chamber
- 7. Fixation of muscle
- 8. Measurement

Measurement Results: Electrograms 10 0 Potential [mV] -10 -20 -30 Stimulus 0.2 mA -40 3.6 mm 3.0 mm Distance to 2.0 mm stimulus site -50 1.0 mm 0.0 mm 12 16 20 6 8 14 2 10 18 0 4 Time [ms] Stimulus artifact **CVRTI** Computational Modeling of the Cardiovascular System - Page 5

Electrical Mapping of Canine Ventricles

Optical Mapping of Canine Ventricular Area

In-/Outflow of Currents during Excitation

In-/Outflow of Currents during Repolarization

Isotropic/Anisotropic Excitation Propagation (2D)

Models of Electrical Conduction

Macroscopic

Rule based / cellular automata

(Moe 62, Eifler-Plonsey 75, Killmann-Wach 91, Wei-Okazaki 95, Werner-Sachse-Dössel 97, Siregar 98, Simelius 00 etc.)

Reaction diffusion systems

- **Simplified** (*FitzHugh-Nagumo 61, Rogers-McCulloch 94 etc.*)
- Combined with models of cellular electrophysiology
 - monodomain (Rudy 89, Virag-Vesin-Kappenberger 98 etc.)
 - bidómaín (Henriquez-Plonsey 89, Sepulveda-Wiksow 93, Sachse-Seemann-Riedel-Werner-Dössel 00 etc.)

Microscopic

(Spach 81)

Reaction Diffusion System: Cable Model

Cable Model: Steady State Response to Non-Excitatory Current

Length constant λ describes spatial distance between two points:

- 1. Location of electrode for injection of current leading to ΔV_m .
- 2. Location at which the voltage $\Delta V_m/e$ is interpolated from measurements.

Length constant λ is determined by intra-, extracellular and membrane resistances, r_i , r_o , and r_m :

$$\lambda = \sqrt{\frac{r_m}{r_i + r_o}} \approx \sqrt{\frac{r_m}{r_i}}$$

Monodomain Modeling of Electrical Conduction in 2D

Monodomain Model for Electrical Conduction in 2/3D

 $\Phi_{\rm m}$

m

si

$$\nabla(\sigma_{i}\nabla\Phi_{m}) = \beta I_{m} - I_{s}$$

Coupling with cell model Numerical Procedure

 $\Phi_{\rm m}(\mathbf{x},t)$ is unknown

$$I_{i} = \nabla (\sigma_{i} \nabla \Phi_{m}) + I_{si}$$
$$\frac{\partial \Phi_{m}}{\partial t} = \frac{1}{C_{m}} \left(\frac{I_{i}}{\beta} - I_{ion} \right)$$

Transmembrane voltage

Transmembrane current

External intracellular current

 O_i Intracellular conductivity tensor (includes conductivity of gap junctions)
 O_i for the set of the s

Surface-volume ratio of cell

 \mathbf{I}_{ion} Current through ion channels

2D-Simulation

2D-Simulation of Arrhythmia

Current Flow in 3D-Model of Electrical Conduction

Anisotropic Monodomain Model

64 x 64 x 128 elements with electrophysiology of ventricular myocytes (Noble-Varghese-Kohl-Noble)

Stimulus at center of plane (Z=0) at time t=0 ms

Fiber orientation parallel to Z-axis

Duration of simulation: 500ms

Colour-coded voltages and streamlines at time t=10 ms in plane (Z=0). Colour indicates transmembrane voltage.

Bidomain Modeling of Electrical Conduction in 2D

Bidomain Model: Motivation

Intra- and extracellular voltage distribution relevant for:

- cardiac excitation propagation
- body surface potential maps (BSPM)
- electrocardiogram (ECG)

Problem:

Realistic cell-based modeling of tissue

- complex geometry of cells
- large number of cells

Idea "Bidomain Model"

- division of space in two domains
- separated calculation

Group Work

Find and describe other applications for (non-electrical) multidomain models in

- physics
- biology
- . . .

What might be the domains of a tridomain model of cardiac electrophysiology?

Bidomain Model: Basics

Bidomain Model: Intracellular Space

Bidomain Model: Extracellular Space

Bidomain Model: Relationships

$$J = J_{i} + J_{e} = -\sigma_{i}\nabla\phi_{i} - \sigma_{e}\nabla\phi_{e}$$

with $\phi_{m} = \phi_{i} - \phi_{e}$:
 $J = -\sigma_{i}\nabla\phi_{m} - \sigma_{i}\nabla\phi_{e} - \sigma_{e}\nabla\phi_{e}$
with $\sigma_{H} = \sigma_{i} + \sigma_{e}$:
 $J = -\sigma_{i}\nabla\phi_{m} - \sigma_{H}\nabla\phi_{e}$
with $\nabla J = 0$:
 $\sigma_{i}\nabla\phi_{m} = -\sigma_{H}\nabla\phi_{e}$
Generalized
Poisson's Equation

Bidomain Model: Numerical Solution

Simulation of Electrophysiology in Myocardial Area

Myocyte cluster in left ventricular free wall

128 x 128 x 128 elements with electrophysiology of ventricular myocytes (Noble-Varghese-Kohl-Noble)

> Inclusion of wall depth dependent • myocyte orientation • current I_{to}

Element coupling via bidomain model

Transmembrane Voltage in Static Myocardial Area

Calcium Concentration in Static Myocardial Area

Rotor in Static Myocardial Area

Cellular Automatons of Cardiac Excitation Propagation

Cellular Automaton: Basics

Anatomical Model

Physiological Parameters

- Autorhythmicity
- Transmembrane voltage
- Conduction velocity
- Refractory period

Cellular Automaton

Cellular Automaton: Modeling of Propagation

Anatomical Model of Heart: Requirements

Necessary: Anatomical model of all excitation triggering and conductive components

Example: Components in model of Werner et al.:

Image segmentation	Manual/rule-based definition
 left atrial myocardium right atrial myocardium left ventricular myocardium right ventricular myocardium 	 Sinus node AV node His bundle Tawara bundle branches Purkinje fibers Fiber orientation

Cellular Automaton: Parameter - Transmembrane Voltage

Course of transmembrane voltage is dependent on tissue type and stimulus frequency.

Activation is only possible outside of absolute refractory time.

Most cellular electrophysiological properties, e.g. ion and transmitter concentrations, nervous influences, extracellular potentials etc. are neglected!

Unidirectional Block/Rotation Around Obstacles (2D)

Unidirectional Block/Rotation Around Obstacles (2D)

Unidirectional Block in Homogeneous Slice (2D)

Results of Whole Heart Simulations

Transmembrane voltage color-coded at heart surface for physiological excitation propagation

8 time steps

- atrial activation starting at sinus node
- ...
- atrial repolarisation
- ventricular activation starting at subendocardium

• ..

ventricular repolarisation

Simulation of 3rd Degree AV Block

Simulation of Infarction

Cellular Automaton: Application in ECG/BSPM Simulation

Simulation System: Overview

Example: ECG Simulation

Group Work

Compare cellular automata with mono-/bidomain models of cardiac conduction! Apply ~5 criteria for comparison.

