Computational Modeling of the Cardiovascular System

Modeling of Force Development in Myocytes

Frank B. Sachse, University of Utah

Hill's Model of Muscle Contraction (1924/1938)

Measurement

- Muscle is fixed at length I_0
- Electrical stimulation

CVRT

Isometric, Tetanus with max. mechanical tension P_o

- Release of fixation
 Force *F* is applied with *F=mg* g: Gravitational constant
 m: Mass
- Measurement of time t, when muscle passes mark at length I
- Calculation of velocity

$$v = \frac{l_0 - l}{t}$$

Relationship between Mass and Contraction Velocity

Modeling of Muscle Contraction

Model Extension: Hill's 3-Element Model (1970)

Limitations of Hill's Model

- only force-velocity relationship
- only tetanized muscle, no information of partial or relaxed muscle
- only serial elastic element
- only quick responses

Hills 3-Element Model

inclusion of parallel elastic element

Further extensions necessary for realistic modeling of cardiac muscles!

Sarcomeres in Cardiac Muscle (Fawcett & McNutt 1969)

Sarcomeres in Skeletal Muscle (Fawcett & McNutt 1969)

Sarcotubular System T system (transverse tubule) Sarcoplasmic reticulum (longitudinal tubule) Sarcolemma (cell membrane) Triad (skeletal muscle) Dyad (cardiac muscle) Mitochondrion (modified from Porter and Franzini- Armstrong)

Proteins of Sarcomere

Involved Proteins and Regulation of Force

Contraction of Myocyte by Electrical Stimulation

Microscopic imaging of isolated ventricular cell from guinea pig http://www-ang.kfunigraz.ac.at/~schaffer

Measurement of Force Development in Single Cell

Measurement Techniques

Permeabilization of sarcolemma/skinning of myocytes by saponin or Triton X-100

Direct control of intracellular concentrations of ions, drugs etc.

 $\left[Ca^{2+}\right]_{i} = \left[Ca^{2+}\right]_{o}$

Transillumination of myocyte or muscle strands with laser light

Diffraction pattern ~ sarcomere length

Sarcomere Length Measurement via Laser Diffraction

FIGURE 2. Diffraction spectra obtained from a thin, right-ventricular rat trabecula. The two first-order diffracted lines (± 1) were symmetrically spaced on either side of the central bright line of nondiffracted light (zero order). The distance between the zero-order line and the first-order lines are inversely related to sarcomere length.

(Figures from Lecarpentier et al., Real-Time Kinetics of Sarcomere Relaxation by Laser Diffraction, AJP, 1985)

More information: http://muscle.ucsd.edu/musintro/diffraction.shtml

EXEMPT 1. Experimental set-up. Abbreviations are: I, laser; MI, microscope; V, video camera; MC, muscle chamber; B, beam splitter; W, densitometric wedge; F, split; D_1 and D_2 diodes; g and h, optical signals electronically converted by D_1 and D_2 respectively; g/h, signal function of sarcomere length; T, electromagnetic transducer; B_2 stimulator; M, muscle tension and shortening curves vs. time (0); S, instantaneous sarcomere length curve vs. time (0).

Force Development: Sliding Filament Theory

Cellular force development by sliding myofilaments (Huxley 1957), i.e. actin and myosin, located in sarcomere

Attachment of myosin heads to actin

Filament sliding

Force Development: Sliding Filament Theory

Actin-Myosin Interaction

Coupling of Electrophysiology and Force Development

Calcium Handling and EC-Coupling

Group Work

Which states are important for a detailed modeling of force in myocytes?

Which states can be neglected for an efficient model?

Models of Force Development

CVRT

Mathematical Modeling of Myofilament Sliding (Huxley)

Modeling of Cellular Force Development

4-State Model of Force Development: State Diagram

Description by set of 1st order ODEs

- Transfer of states N0, N1, T0, and T1 is dependent of rate coefficients
- Rate coefficients are partly function of intracellular calcium [Ca²⁺]_i

(Model 1 of Rice 1999 et al./ Landesberg et al.1994)

4-State Model of Force Development

α

Several states contribute to force development:

Force is dependent on overlap of actin and myosin filaments.

Frank-Starling Mechanism

Force ~ initial length

Diastolic volume ~ cardiac output

Sarcomere length $[\mu\,m]$

4-State Model of Force Development: Matrix Notation

Numerical solution e.g. with Euler- and Runge-Kutta-methods

State Diagram of 3rd Model of Rice 1999 et al.

Matrix representation of State Diagram

Force Development for Different Static Sarcomere Lengths (SL)

Model of Glänzel et al. 2002: Activation

Model of Glänzel et al. 2002: Crossbridge Cycling

Reconstruction of Static Measurements

Reconstruction of Length Switch Experiments

Study

- · Species: rabbit
- Ventricular myocytes

Length Switch Experiment

- Stretch of 4.6% in 10 ms
- Return to original configuration in 10 ms

Coupling of Force with Electrophysiological Models: Basics

Coupling of Force with Electrophysiological Models

Coupling of Force with Electrophysiological Models

Coupling of Force with Electrophysiological Model: Human

Modeling Force Development with Cellular Automaton

Anatomical Model

Physiological Parameters

Cellular Automaton

- Transmembrane voltage
- Calcium concentration

CVRTI

Modeling of Force Development: Sinus Rhythm

Modeling of Force Development: Coupling

Group Work

Discuss the application of cellular automata for simulation of electrophysiology and force development.

Which simulations are more realistic?

