Computational Modeling of the Cardiovascular System

Finite Element Method II Finite Differences Method

Frank B. Sachse, University of Utah

Overview

CVRT

Boundary Conditions

Finite Element Method: Element matrix

Extremal Principles for Classical Boundary Problem

Solving of Classical Boundary Problem

Make

$$I = \iint_{G} \frac{1}{2} \left(k_{1}(\mathbf{x},\mathbf{y}) \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)^{2} + k_{2}(\mathbf{x},\mathbf{y}) \left(\frac{\partial \mathbf{u}}{\partial \mathbf{y}} \right)^{2} \right) - \frac{1}{2} \varsigma(\mathbf{x},\mathbf{y}) \mathbf{u}^{2} + \mathbf{f}(\mathbf{x},\mathbf{y}) \mathbf{u} \quad d\mathbf{x} \, d\mathbf{y}$$
$$+ \oint_{C} \frac{1}{2} \alpha(\mathbf{s}) \mathbf{u}^{2} - \gamma(\mathbf{s}) \mathbf{u} \quad d\mathbf{s}$$

stationary!

I(u) = min!

Proof via variational calculus (Schwarz "Methode der finiten Elemente", page 23)

Galerkin-Ritz Method

Determine solution function u for differential equation(s) on basis of linear independent problem adapted functions ϕ and boundary conditions:

$$\mathbf{u}(\mathbf{x}) = \mathbf{\phi}_0 + \sum_{k=1}^{\infty} \mathbf{C}_k \mathbf{\phi}_k$$

 ϕ_0 : Problem adapted function, fulfills inhomogeneous boundary condition

 ϕ_k : Problem adapted function, fulfills homogeneous boundary condition and vanishes at location of inhomogeneous condition

```
]-¢0(x)=c
```

φ_k(x)=0

C_k: Unknown coefficients

Indirect method: Not

f(u,x) + q(u,x) = 0

- U: Problem adapted function **Q**: Source term
- f: Differential equation X: Variable

is solved!

Galerkin-Ritz Method: Weighted Residuals

Transform: Solve system of equations resulting from:

 $\int Rw \, dx = 0$ Residuum: R(u,x) = f(u,x) + q(u,x)Weighting function: w(x)

Galerkin: Use problem adapted functions as weighting functions:

$$\mathbf{w}(\mathbf{x}) \leftarrow \begin{pmatrix} \phi_1 \\ \vdots \\ \phi_m \end{pmatrix}$$

Advantage:

Order of derivatives is reduced in comparison to original differential equation system

Example: Flow of Fluid in 2D

Flow: stationary Fluid: viscous, incompressible, ...

Partial differential equations:

$$\begin{split} &\frac{\partial p}{\partial x} - \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0 & \text{Poisson-type equation} \\ &\frac{\partial p}{\partial y} - \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) = 0 \\ &\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 & \text{Continuity equation} \\ &u,v: & \text{Velocity in x- and y-direction, resp. [m/s]} \\ &\mu: & \text{Viscosity [Ns/m^2]} \\ &p: & \text{Pressure [N/m^2]} \end{split}$$

Example: Transforms

Problem adapted functions:

$$\begin{aligned} \mathsf{u}(\mathsf{x},\mathsf{y}) &= \phi_0(\mathsf{x},\mathsf{y}) + \sum_{k=1}^{\mathsf{m}} \mathsf{u}_k \phi_k(\mathsf{x},\mathsf{y}) & \mathsf{v}(\mathsf{x},\mathsf{y}) &= \psi_0(\mathsf{x},\mathsf{y}) + \sum_{k=1}^{\mathsf{m}} \mathsf{v}_k \psi_k(\mathsf{x},\mathsf{y}) \\ \mathsf{p}(\mathsf{x},\mathsf{y}) &= \chi_0(\mathsf{x},\mathsf{y}) + \sum_{k=1}^{\mathsf{q}} \mathsf{p}_k \chi_k(\mathsf{x},\mathsf{y}) \end{aligned}$$

Substitution in original equations:

$$\begin{split} & \iint_{G} \left[\frac{\partial \chi_{0}}{\partial x} + \sum_{k=1}^{q} p_{k} \frac{\partial \chi_{k}}{\partial x} - \mu \left(\Delta \varphi_{0} + \sum_{k=1}^{m} u_{k} \Delta \varphi_{k} \right) \right] \varphi_{j} \, dx \, dy \qquad j = 1, \dots, m \\ & \iint_{G} \left[\frac{\partial \chi_{0}}{\partial y} + \sum_{k=1}^{q} p_{k} \frac{\partial \chi_{k}}{\partial y} - \mu \left(\Delta \psi_{0} + \sum_{k=1}^{m} v_{k} \Delta \psi_{k} \right) \right] \psi_{j} \, dx \, dy \qquad j = 1, \dots, m \\ & \iint_{G} \left[\frac{\partial \varphi_{0}}{\partial x} + \sum_{k=1}^{m} u_{k} \frac{\partial \varphi_{k}}{\partial x} + \frac{\partial \psi_{0}}{\partial y} + \sum_{k=1}^{m} u_{k} \frac{\partial \psi_{k}}{\partial y} \right] \chi_{j} \, dx \, dy \qquad j = 1, \dots, q \end{split}$$

Example: Transforms

(Schwarz ,Methode der finiten Elemente', page 54-):

$$\sum_{k=1}^{m} u_{k} \iint_{G} \mu \nabla \phi_{k} \cdot \nabla \phi_{j} \, dx \, dy + \sum_{k=1}^{q} p_{k} \iint_{G} \frac{\partial \chi_{k}}{\partial x} \phi_{j} \, dx \, dy + R_{j} = 0$$

$$\sum_{k=1}^{m} v_{k} \iint_{G} \mu \nabla \psi_{k} \cdot \nabla \psi_{j} \, dx \, dy + \sum_{k=1}^{q} p_{k} \iint_{G} \frac{\partial \chi_{k}}{\partial y} \psi_{j} \, dx \, dy + S_{j} = 0$$

$$\sum_{k=1}^{m} u_{k} \iint_{G} \frac{\partial \phi_{k}}{\partial x} \chi_{j} \, dx \, dy + \sum_{k=1}^{m} v_{k} \iint_{G} \frac{\partial \psi_{k}}{\partial y} \chi_{j} \, dx \, dy + T_{j} = 0$$

$$R_{j}, S_{j}, T_{j}: \quad \text{Other terms}$$
Transform in system of linear equations

Assembly of System Matrix and Vector

Element matrix ${\rm S_e}$ und vector ${\rm b_e}$ determine element integral ${\rm I_e}$ for field variable vector ${\rm u_e}$

$$I_{e} = \int_{E} f(u(\vec{x})) dV \implies I_{e} = \vec{u}_{e}^{T} S_{e} \vec{u}_{e} + \vec{b}_{e}^{T} \vec{u}_{e} + C_{e}$$

- u: Solution function
- **x**: Coordinate vector
- C_e: Constant

System matrix ${\rm S_s}$ und vector ${\rm b_s}$ determine system integral ${\rm I_s}$ for field variable vector ${\rm u_s}$

$$S = \bigcup_{i} E_{i}: I_{s} = \int_{S} f(u(\vec{x})) dV = \sum_{i} I_{e_{i}} \implies I_{s} = \vec{u}_{s}^{T} S_{s} \vec{u}_{s} + \vec{b}_{s}^{T} \vec{u}_{s} + C_{s}$$

Field Variable Vector, System Matrix and Vector

Example: Assembly of System Matrix

Elements: Quads, bilinear interpolation function

Assigned conductivities: σ_1, σ_2

Coupling for node variables: ϕ_2 , ϕ_4

Example: Element Integrals to Element Matrices

Example: Sorting and Addition

Example: Derivative of Quadratic System

Boundary Conditions: Extension of System

Example: Inhomogeneous Dirichlet boundary condition: $\phi_i = C$ $\begin{pmatrix} \phi_i \\ \vdots \\ \phi_i \end{pmatrix} \begin{pmatrix} b_i \\ \vdots \end{pmatrix}$

$$\begin{pmatrix} & \mathsf{A}_{\mathsf{s}} & & \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{pmatrix} \begin{vmatrix} \varphi_{i-1} \\ \varphi_{i} \\ \varphi_{i+1} \\ \vdots \\ \varphi_{\mathsf{n}} \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathsf{b}_{\mathsf{n}} \\ \mathsf{c} \end{pmatrix}$$

Example: Neumann boundary condition:

 $\phi_i = \phi_{i+1}$

$$\begin{pmatrix} & \mathbf{A}_{s} \\ 0 & \cdots & 0 & 1 & -1 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\varphi}_{1} \\ \vdots \\ \boldsymbol{\varphi}_{i-1} \\ \boldsymbol{\varphi}_{i} \\ \boldsymbol{\varphi}_{i+1} \\ \vdots \\ \boldsymbol{\varphi}_{n} \end{pmatrix} = \begin{pmatrix} \mathbf{b}_{1} \\ \vdots \\ \vdots \\ \mathbf{b}_{n} \\ 0 \end{pmatrix}$$

CVRTI

Boundary Conditions: Modification of System

Homogeneous Dirichlet boundary condition: $X_s^J = 0$

- Set j-th element of b to 0: b_j:=0
 Set elements in j-th column und j-th row of A to 0
- Set j-th,j-th. element of A to 1: A_{ii}:=1

Inhomogeneous Dirichlet boundary condition $X_{s}^{J} = C$, **C** ≠ **0**

- Subtract c-fold of A's j-th column vector from b
- Set j-th element of b to c: b_i:=c
- Set elements in j-th column und j-th row of A to 0
- Set j-th,j-th. element of A to 1: A_{ii}:=1

Advantage: Dimension of system matrix and vector is conserved!

Example: Boundary Conditions I

Example: Boundary Conditions II

Exemplary Field Distribution

Example: Boundary Conditions

Example: Homogeneous Boundary Condition

Example: Add Inhomogeneous Boundary Condition

Exemplary Field Distribution

Properties of System Matrix

Sorting of Node Variables

Adjacencies of node variables determines band width of system matrix!

Node variables i und j (i \neq j) are adjacent, if $a^{i, j} \neq 0$ Degree of node variable = number of adjacent node variables

Cuthill-McKee Algorithm

Choose a node x with minimal degree and add it to the result set R R := $(\{x\})$

For i=1,2,.. and while |R| < n

Construct the adjacency set A_i of R_i excluding nodes $\in \mathsf{R}$

$$\mathsf{A}_{\mathsf{i}} \coloneqq \mathsf{Adj}(\mathsf{R}_{\mathsf{i}}) \setminus \mathsf{R}$$

Sort A_i with ascending degree order Append A_i to the result set R

$$\mathsf{R} \coloneqq \mathsf{R} \cup \mathsf{A}_{\mathsf{i}}$$

Exemplary Application of Cuthill-McKee Algorithm

Example: System Matrix

Group Work

Which boundary conditions would you apply in a mechanical simulation of a human heart in situ?

Classification of Partial Differential Equations

u(x,y) fulfills the linear partial differential equation:

```
Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_{x} + Eu_{y} + Fu = H
```

in domain $G \subset \mathfrak{R}^2$

 $AC - B^2 < 0$: hyperbolic

 $AC - B^2 = 0$: parabolic

 $AC - B^2 > 0$: elliptic

Elliptic Partial Differential Equations

2D Poisson equation:

2D Laplace equation:

2D Helmholtz equation:

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = \rho(\mathbf{x}, \mathbf{y})$$
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = 0$$
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} + \mathbf{k}^2 \mathbf{u} = 0$$

 $\rho(x,y)$: Source term

k: Constant

Boundary problem static/(quasi-)stationary solution

Elliptic Partial Differential Equations

Generalized Poisson Equation for Electrical Fields

$$\nabla \cdot \left(\vec{\sigma} \nabla \Phi \right) + \mathbf{f} = 0$$

- Φ : Electrical potential [V]
- $\vec{\sigma}$: Conductivity tensor [S/m]
- f: Current source density [A/m³]

Scalar/ complex quantities

Partial Differential Equations: Navier-Stokes

Exemplary Initial Value Problem: Diffusion Equation

Exemplary Initial Value Problem: Diffusion Equation

Exemplary Initial Value Problem: Diffusion Equation

Heat Conduction

$$\frac{\lambda}{\rho c} \Delta T - \frac{\partial T}{\partial t} = 0$$

- **T:** Temperature [°C]
- λ : Thermal conductivity [W/m/K]
- ρ: Density [kg/m³]
- **c:** Specific thermal conductivity [J/ K kg]

Finite Differences Method: Overview

Exemplary Spatial Discretizations

Exemplary Spatial Discretizations: Dual Grid

Exemplary Spatial Discretizations: Irregular Mesh

Principle Partial differential equation **Operators** elliptical 1. Derivative spatial/temporal 2. Derivative spatial/temporal/mixed parabolic hyperbolic Grad / Div / Rot . . . Approximation with differences Example $\frac{\partial \mathbf{u}}{\partial \mathbf{t}} \approx \frac{\mathbf{u}_{k} - \mathbf{u}_{k-1}}{\Delta \mathbf{t}}$ $\alpha \frac{\partial u}{\partial t} + \beta \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \left(\gamma \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial u}{\partial y} \right) \qquad \qquad \frac{\partial t}{\partial t^2} \approx \frac{u_{k+1} - 2u_k + u_{k-1}}{2\Delta t}$ Compare with **Euler-Method** CVRT Computational Modeling of the Cardiovascular System - Page 48

Discretization of 1D-Operators: 1st Spatial Derivative

Discretization of 1D-Operators: 2nd Spatial Derivative

Error of Finite Differences Approximation

Taylor series
approximation
$$u(k \pm \Delta x) = u(k) \pm \frac{\partial u}{\partial x}(k) \frac{\Delta x}{1!} + \frac{\partial^2 u}{\partial x^2}(k) \frac{\Delta x^2}{2!} \pm \frac{\partial^3 u}{\partial x^3}(k) \frac{\Delta x^3}{3!} + \dots$$
Forward
difference $\frac{u(k + \Delta x) - u(k)}{\Delta x} = \frac{\partial u}{\partial x}(k) + \frac{\partial^2 u}{\partial x^2}(k) \frac{\Delta x}{2!} + \dots = \frac{\partial u}{\partial x}(k) + E$
Error: $E = E(u, \Delta x) = \frac{\partial^2 u}{\partial x^2}(k) \frac{\Delta x}{2!} + \dots$ Central
difference $\frac{u(k + \Delta x) - u(k - \Delta x)}{2\Delta x} = \frac{1}{2} \left(\frac{\partial u}{\partial x}(k) + \frac{\partial^3 u}{\partial x^3}(k) \frac{\Delta x^2}{3!} + \dots \right) = \frac{1}{2} \left(\frac{\partial u}{\partial x}(k) + E \right)$
Error: $E = E(u, \Delta x) = \frac{1}{2} \left(\frac{\partial^3 u}{\partial x^3}(k) \frac{\Delta x^2}{3!} + \dots \right) = \frac{1}{2} \left(\frac{\partial u}{\partial x}(k) + E \right)$ Forward
Difference $\frac{u(k + \Delta x) - u(k - \Delta x)}{2\Delta x} = \frac{1}{2} \left(\frac{\partial u}{\partial x}(k) + \frac{\partial^3 u}{\partial x^3}(k) \frac{\Delta x^2}{3!} + \dots \right) = \frac{1}{2} \left(\frac{\partial u}{\partial x}(k) + E \right)$ Forward
Difference $\frac{u(k + \Delta x) - u(k - \Delta x)}{2\Delta x} = \frac{1}{2} \left(\frac{\partial u}{\partial x}(k) \frac{\Delta x^3}{3!} + \dots \right) = \frac{1}{2} \left(\frac{\partial u}{\partial x}(k) + E \right)$ Central
difference $\frac{u(k + \Delta x) - u(k - \Delta x)}{2\Delta x} = \frac{1}{2} \left(\frac{\partial u}{\partial x}(k) \frac{\Delta x^3}{3!} + \dots \right)$ Computational Modeling of the Cardiovascular System - Page 51

Discretization of 1D-Operators: 1st Temporal Derivative

Discretization of 1D-Operators: 2nd Temporal Derivative

Discretization of 2D-Operators: 1st/2nd Spatial Derivative

$$\begin{split} u_{x}(x,y) &= \lim_{\Delta x \to 0} \frac{u(x + \Delta x,y) - u(x - \Delta x,y)}{2\Delta x} \longrightarrow & u_{x}(k,j) = \frac{u(k + 1,j) - u(k - 1,j)}{2\Delta x} \\ u_{y}(x,y) &= \lim_{\Delta x \to 0} \frac{u(x,y + \Delta y) - u(x,y - \Delta y)}{2\Delta y} \longrightarrow & u_{y}(k,j) = \frac{u(k + 1,j) - u(k,j - 1)}{2\Delta y} \\ u_{xx}(x,y) &= \lim_{\Delta x \to 0} \frac{u_{x}\left(x + \frac{\Delta x}{2}, y\right) - u_{x}\left(x - \frac{\Delta x}{2}, y\right)}{\Delta x} \longrightarrow & u_{xx}(k,j) = \frac{u(k + 1,j) - 2u(k,j) + u(k - 1,j)}{\Delta x^{2}} \\ u_{yy}(x,y) &= \lim_{\Delta y \to 0} \frac{u_{y}\left(x,y + \frac{\Delta y}{2}\right) - u_{y}\left(x,y - \frac{\Delta y}{2}\right)}{\Delta y} \longrightarrow & u_{xy}(k,j) = \frac{u(k + 1,j) - 2u(k,j) + u(k,j - 1)}{\Delta y^{2}} \\ u_{xy}(x,y) &= \lim_{\Delta y \to 0} \frac{u_{x}\left(x,y + \frac{\Delta y}{2}\right) - u_{x}\left(x,y - \frac{\Delta y}{2}\right)}{\Delta y} \longrightarrow & u_{xy}(k,j) = \frac{u(k + 1,j + 1) - u(k - 1,j + 1) - u(k + 1,j - 1) + u(k - 1,j - 1)}{\Delta x^{2}} \end{split}$$

Usage e.g. with 2D Poisson equation Proceeding similar to discretization of mixed function u(x,t)

U CVRTI

Discretization of 3D-Operators: div / grad of Scalar Functions

$$\nabla \mathbf{u}(\mathbf{\bar{x}}) = \begin{pmatrix} \frac{\partial}{\partial} \mathbf{u} \\ \frac{\partial}{\partial} \mathbf{x}_1 \\ \frac{\partial}{\partial} \mathbf{u}_2 \\ \frac{\partial}{\partial} \mathbf{x}_3 \end{pmatrix} \rightarrow \nabla \mathbf{u}(\mathbf{\bar{k}}) = \begin{pmatrix} \frac{\mathbf{u}(\mathbf{k}_1 + \mathbf{1}, \mathbf{k}_2, \mathbf{k}_3) - \mathbf{u}(\mathbf{k}_1 - \mathbf{1}, \mathbf{k}_2, \mathbf{k}_3) \\ 2\Delta \mathbf{k}_1 \\ \frac{\mathbf{u}(\mathbf{k}_1, \mathbf{k}_2 + \mathbf{1}, \mathbf{k}_3) - \mathbf{u}(\mathbf{k}_1, \mathbf{k}_2 - \mathbf{1}, \mathbf{k}_3) \\ 2\Delta \mathbf{k}_2 \\ \frac{\mathbf{u}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3 + \mathbf{1}) - \mathbf{u}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3 - \mathbf{1}) \\ 2\Delta \mathbf{k}_3 \end{pmatrix}$$

$$\nabla \cdot \mathbf{u}(\mathbf{\bar{x}}) = \frac{\partial}{\partial} \mathbf{u}_1 + \frac{\partial}{\partial} \mathbf{u}_2 + \frac{\partial}{\partial} \mathbf{u}_3 \\ \rightarrow \nabla \cdot \mathbf{u}(\mathbf{\bar{k}}) = \frac{\mathbf{u}(\mathbf{k}_1 + \mathbf{1}, \mathbf{k}_2, \mathbf{k}_3) - \mathbf{u}(\mathbf{k}_1 - \mathbf{1}, \mathbf{k}_2, \mathbf{k}_3)}{2\Delta \mathbf{k}_1} \\ + \frac{\mathbf{u}(\mathbf{k}_1, \mathbf{k}_2 + \mathbf{1}, \mathbf{k}_3) - \mathbf{u}(\mathbf{k}_1, \mathbf{k}_2 - \mathbf{1}, \mathbf{k}_3)}{2\Delta \mathbf{k}_2} + \frac{\mathbf{u}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3 + \mathbf{1}) - \mathbf{u}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3 - \mathbf{1})}{2\Delta \mathbf{k}_3}$$

Discretization of 3D-Operators: rot of Vectorial Functions

$$\nabla \times \vec{A}(\vec{x}) = \begin{pmatrix} \frac{\partial}{\partial} \frac{A_3}{x_2} - \frac{\partial}{\partial} \frac{A_2}{x_3} \\ \frac{\partial}{\partial} \frac{A_1}{x_1} - \frac{\partial}{\partial} \frac{A_3}{x_2} \\ \frac{\partial}{\partial} \frac{A_2}{x_1} - \frac{\partial}{\partial} \frac{A_1}{x_2} \end{pmatrix}$$

$$\rightarrow \nabla \times \vec{A}(\vec{k}) = \begin{pmatrix} \frac{A_3(k_1, k_2 + 1, k_3) - A_3(k_1, k_2 - 1, k_3)}{2\Delta k_2} - \frac{A_2(k_1, k_2, k_3 + 1) - A_2(k_1, k_2, k_3 - 1)}{2\Delta k_3} \\ \frac{A_1(k_1, k_2, k_3 + 1) - A_1(k_1, k_2, k_3 - 1)}{2\Delta k_3} - \frac{A_3(k_1 + 1, k_2, k_3) - A_3(k_1 - 1, k_2, k_3)}{2\Delta k_1} \\ \frac{A_2(k + 1_1, k_2, k_3) - A_2(k_1 - 1, k_2, k_3)}{2\Delta k_1} - \frac{A_1(k_1, k_2 + 1, k_3) - A_1(k_1, k_2 - 1, k_3)}{2\Delta k_2} \end{pmatrix}$$

CVRT

Discretization of 1D Wave Equation with Central Differences

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{V}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} \qquad \mathbf{V}: \quad \mathbf{V}$$

$$u_{tt}(k,n) = v^2 u_{xx}(k,n)$$

CVRT

$$\frac{u(k,n+1) - 2u(k,n) + u(k,n-1)}{\Delta t^2} = v^2 \frac{u(k+1,n) - 2u(k,n) + u(k-1,n)}{\Delta x^2}$$
$$\frac{u(k,n+1)}{\Delta t^2} = v^2 \frac{u(k+1,n) - 2u(k,n) + u(k-1,n)}{\Delta x^2} - \frac{u(k,n-1) - 2u(k,n)}{\Delta t^2}$$
$$u(k,n+1) = \Delta t^2 v^2 \frac{u(k+1,n) - 2u(k,n) + u(k-1,n)}{\Delta x^2} - u(k,n-1) + 2u(k,n)$$

k: Spatial coordinate/index

n: Temporal coordinate/index

Schematic of 1D Wave Equation with Central Differences

Discretization of 1D Diffusion Equation

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{D} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)$$

D: Diffusion coefficient

 $u_t(k,n) = D u_{xx}(k,n)$

$$\frac{u(k,n) - u(k,n+1)}{\Delta t} = D \frac{u(k+1,n) - 2u(k,n) + u(k-1,n)}{\Delta x^2}$$
$$\frac{u(k,n+1)}{\Delta t} = D \frac{u(k+1,n) - 2u(k,n) + u(k-1,n)}{\Delta x^2} + \frac{u(k,n)}{\Delta t}$$
$$u(k,n+1) = \Delta t D \frac{u(k+1,n) - 2u(k,n) + u(k-1,n)}{\Delta x^2} + u(k,n)$$

Schematic of 1D Diffusion Equation

Discretization of 2D Poisson Equation

$$\rho(\mathbf{x}, \mathbf{y}) = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} \qquad \rho(\mathbf{x}, \mathbf{y}): \text{ Source term}$$

$$\rho(\mathbf{k}, \mathbf{l}) = \mathbf{u}_{xx}(\mathbf{k}, \mathbf{l}) + \mathbf{u}_{yy}(\mathbf{k}, \mathbf{l})$$

$$\rho(\mathbf{k}, \mathbf{l}) = \frac{\mathbf{u}(\mathbf{k} + 1, \mathbf{l}) - 2\mathbf{u}(\mathbf{k}, \mathbf{l}) + \mathbf{u}(\mathbf{k} - 1, \mathbf{l})}{\Delta \mathbf{x}^2} + \frac{\mathbf{u}(\mathbf{k}, \mathbf{l} + 1) - 2\mathbf{u}(\mathbf{k}, \mathbf{l}) + \mathbf{u}(\mathbf{k}, \mathbf{l} - 1)}{\Delta \mathbf{y}^2}$$

$$\frac{2\mathbf{u}(\mathbf{k}, \mathbf{l})}{\Delta \mathbf{x}^2} + \frac{2\mathbf{u}(\mathbf{k}, \mathbf{l})}{\Delta \mathbf{y}^2} = \frac{\mathbf{u}(\mathbf{k} + 1, \mathbf{l}) + \mathbf{u}(\mathbf{k} - 1, \mathbf{l})}{\Delta \mathbf{x}^2} + \frac{\mathbf{u}(\mathbf{k}, \mathbf{l} + 1) + \mathbf{u}(\mathbf{k}, \mathbf{l} - 1)}{\Delta \mathbf{y}^2} - \rho(\mathbf{k}, \mathbf{l})$$

$$\Delta \mathbf{x}^2 = \Delta \mathbf{y}^2 = \Delta^2$$

$$\rightarrow \qquad \mathbf{u}(\mathbf{k}, \mathbf{l}) = \frac{\mathbf{u}(\mathbf{k} + 1, \mathbf{l}) + \mathbf{u}(\mathbf{k} - 1, \mathbf{l}) + \mathbf{u}(\mathbf{k}, \mathbf{l} + 1) + \mathbf{u}(\mathbf{k}, \mathbf{l} - 1)}{4} - \frac{\Delta^2 \rho(\mathbf{k}, \mathbf{l})}{4}$$

$$\underbrace{\mathsf{Computational Modeling of the Cardiovascular System - Page 61}$$

Schematic of 2D Poisson Equation

System Matrix For 2D Poisson Equation

Schematic of 2D Poisson Equation with Boundary Condition

Group Work

How can the approximation error be controlled in

finite differences and

• finite elements methods?

