

**TAMPERE UNIVERSITY OF TECHNOLOGY**Ragnar Granit Institute

## 71210 Bioelektroniikka - Bioelectromagnetism Laskuharjoitus 7 – Exercise 7, 10.11.2004

- 1. A cube (0.6\*0.6\*0.6 m) forms a volume conductor  $(\rho=10 \ \Omega \text{cm})$ . Two opposite sides of the cube have been covered by a conducting medium forming two electrodes. Inside the cube is a current dipole (strength 50 mA, source and sink 10 cm apart) perpendicular to the electrode surfaces. Derive the equation for potential difference between the electrodes.
- 2. A current dipole (dipole moment  $10^{-7}$  Am) is in an infinite homogeneous volume conductor ( $\sigma$ =3\*10<sup>-3</sup> S/m). It generates potential D(P) at the point P far away from the dipole location. The dipole is replaced by a double layer (area 4 cm<sup>2</sup>) generating the same potential D(P). What is the double layer potential? (*Answer:* 83 mV)
- 3. Derive the lead vectors of the limb leads I, II, and III, leads VR, VF, VL, and the Goldberger leads aVR, aVL ja aVF in a spherical homogeneous volume conductor.
- 4. Three electrodes (a, b and c) are on the surface of a volume conductor. Inside the conductor is a dipole source. The lead vectors of this dipole defined at the three locations (a, b and c) are:

$$\overline{c_a} = \overline{i} + 2\overline{j} + \overline{k}$$
$$\overline{c_b} = 3\overline{i} + 7\overline{j} + 2\overline{k}$$
$$\overline{c_c} = 7\overline{i} + 5\overline{j} + 4\overline{k}$$

The dipole is parallel to the unit vector i. What is the ratio of the voltages measured between electrodes a and b to a and c? (*Answer: 1/3*)

5. Figure 1 represents an image surface of a volume conductor. Construct new X and Y-leads that would measure dipole sources parallel to X and Y-axis, respective. Use the electrode locations A, B, and C.

6. On the outer rim of a two dimensional volume conductor on points  $P_i$ , i = 1,...,6 the potentials generated by a unit dipole oriented parallel to X or Y axes at point  $P_o$  are as follows:

| Electrode | Potentials generated by X and Y dipoles |         |
|-----------|-----------------------------------------|---------|
| Pi        | $V_X$                                   | $V_{Y}$ |
| 1         | 4                                       | 5       |
|           |                                         |         |
| 2         | 6                                       | -1      |
| 3         | 1                                       | -4      |
| 4         | -4                                      | -2      |
| 5         | -4                                      | 2       |
| 6         | -1                                      | 5       |

Using these measurements is it possible to

- a) Derive the image surface of this source dipole location?
- b) Calculate the lead vector of a lead between the points 3 and 6?
- c) Derive the potential at the point 4 generated by a unit dipole at a point  $P_z$ ?
- d) Derive the lead field of the volume conductor?
- e) Construct a VECG lead system (X and Y-leads) that would measure the X and
- Y components of the dipole at the point Po with similar sensitivity?



Figure 1. Image surface of a volume conductor. A, B and C refer to the electrode locations.