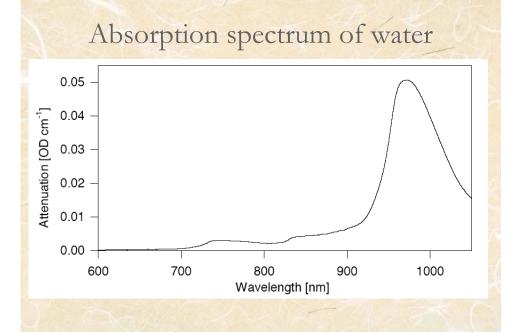
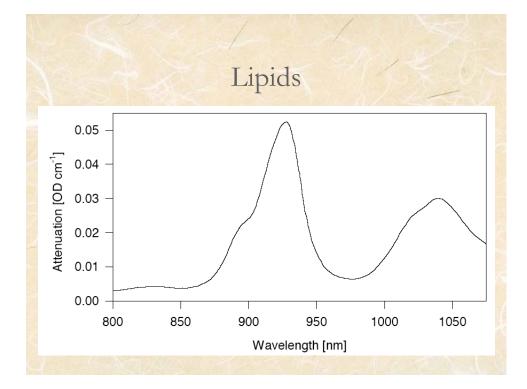


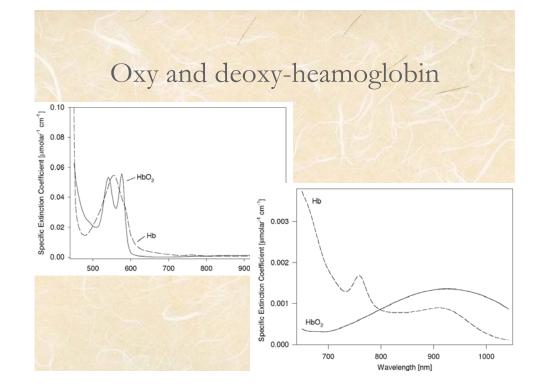
Optical properties vs Optical measurements

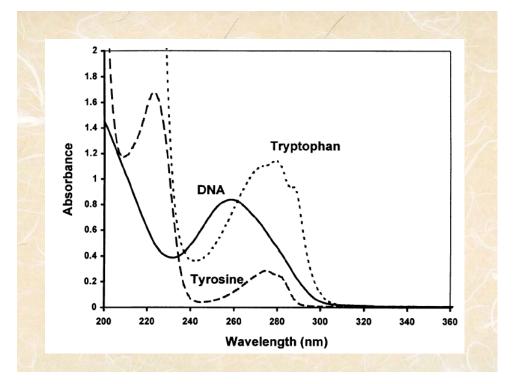
R

• reduced scattering	$\mu_{s}(1-g)$
• anisotropy	g
• scattering	μ _s
• absorption	μ _a
• refractive index	n

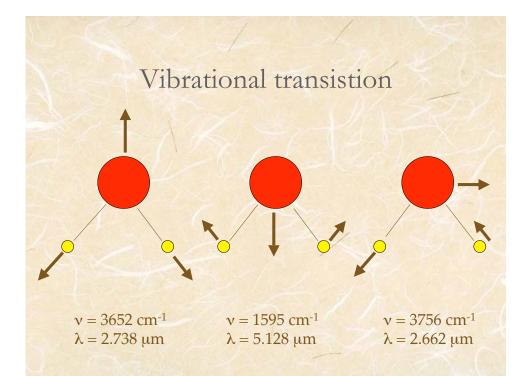

transmissionreflectance

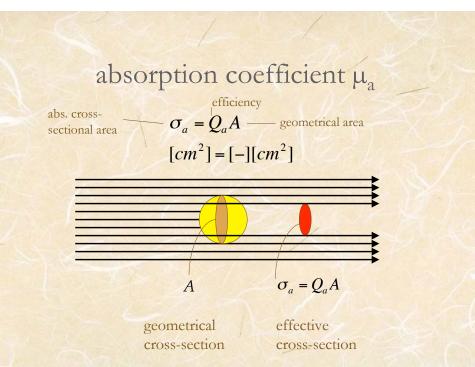

Absorption

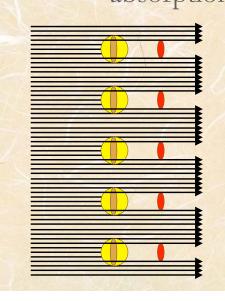

• In biomedical optics, *absorption* of photons is a most important event:

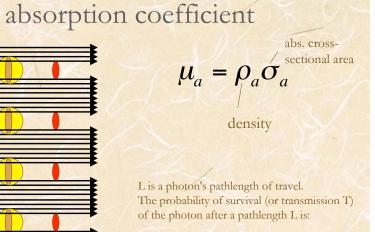

- Absorption is the primary event that allows a laser or other light source to cause a potentially therapeutic (or damaging) effect on a tissue.
 - Without absorption, there is no energy transfer to the tissue and the tissue is left unaffected by the light.
- Absorption of light provides a diagnostic role such as the spectroscopy of a tissue.
 - Absorption can provide a clue as to the chemical composition of a tissue, and serve as a mechanism of optical contrast during imaging.

 $dI = -\mu_a I dx$ $I = I_0 e^{-\mu_a x}$ Beer - Lambert $OD = \log_{10}(\frac{1}{T}) = -\log_{10}(\frac{1}{I_0}) = -\log_{10}(T)$ $OD = \log_{10}(e)\mu_a x = \alpha cx$

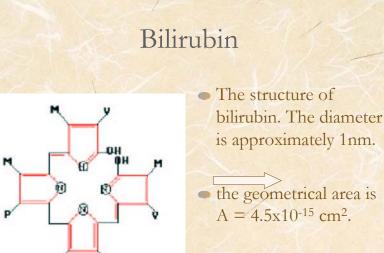

Chromophores

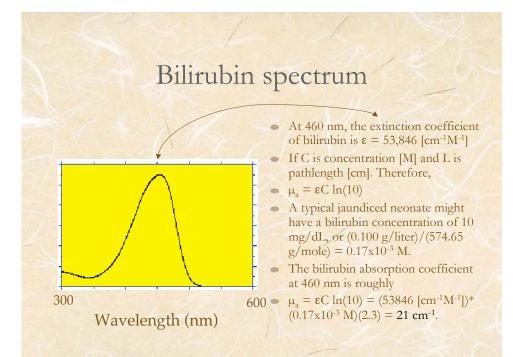

- Molecules that absorb light are called chromophores.
- There are two major types of chromophores:
 - electronic transitions
 - vibrational transitions

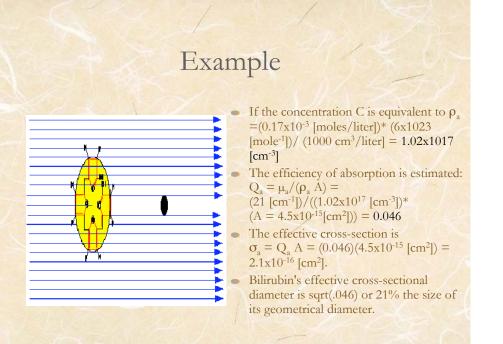

Electronic transitions

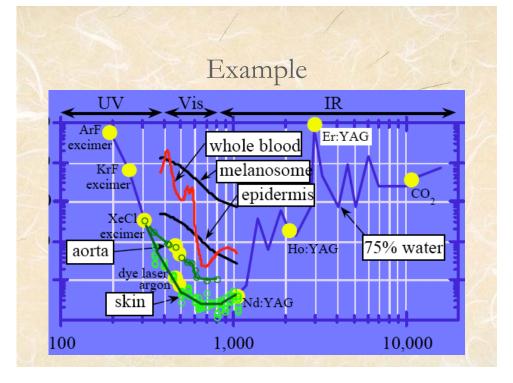

(N

pyroles porphyrins heme chlorophyl cytochromes phycobiliproteins carotenoids ferredoxins flavins melanin

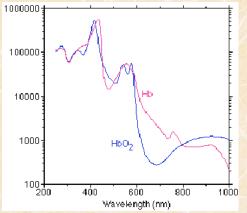








 $T = \exp[-\mu_a L]$

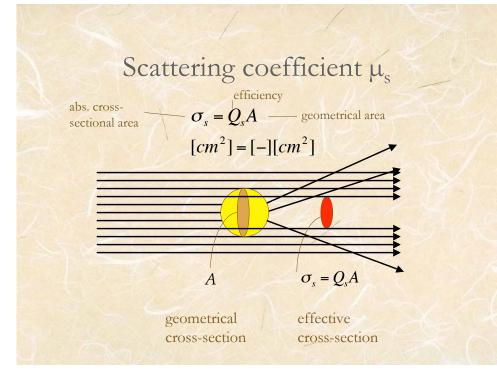


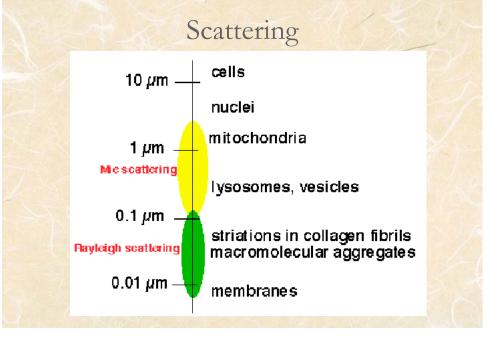
Less common spectra of blood

- If the hemoglobin molecule is bound to carbon monoxide then one has carboxy-hemoglobin or HbCO
- If the hemoglobin molecule has broken down then one has meta-hemoglobin.

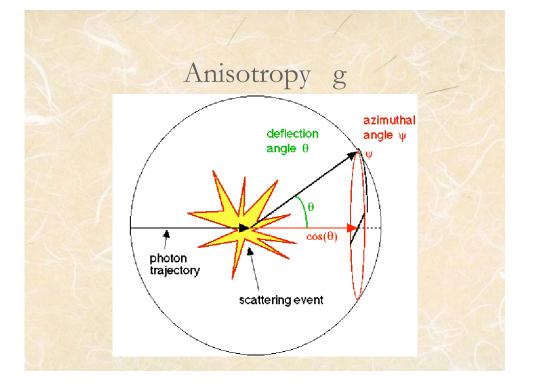
Most comman Hb-spectra

- If the hemoglobin molecule is bound to oxygen then one has oxy-hemoglobin or Hb0₂ [blue]
- If the hemoglobin molecule is bound to nothing then one has deoxy-hemoglobin or Hb [red]




Scattering

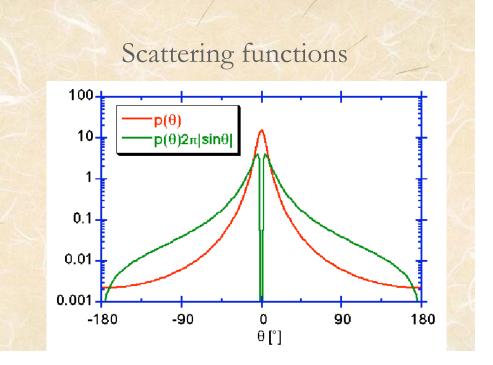
- The light scattered by a tissue has interacted with the ultrastructure of the tissue.
- Tissue ultrastructure extends from membranes to membrane aggregates to collagen fibers to nuclei to cells.
- Photons are most strongly scattered by those structures whose size matches the photon wavelength.


Scattering possibilities

- Scattering provides feedback during therapy.
 - during laser coagulation of tissues, the onset of scattering is an observable endpoint
- Scattering has diagnostic value.
 - the density of lipid membranes in the cells, the size of nuclei, the presence of collagen fibers, the status of hydration in the tissue.

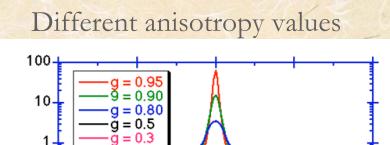
Scattering coefficient μ_s scattering crosssectional area $\mu_s = \rho_s \sigma_s$ density The probability of transmission T of the photon without redirection by scattering after a pathlength L is: $T = \exp[-\mu_s L]$

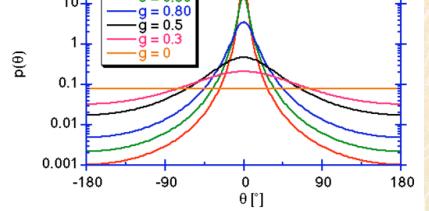
Scattering function


 The angular dependence of scattering is called the scattering function, p(θ) which has units of [sr-1] and describes the probability of a photon scattering into a unit solid angle oriented at an angle relative to the photons original trajectory.

Anisotropy definition

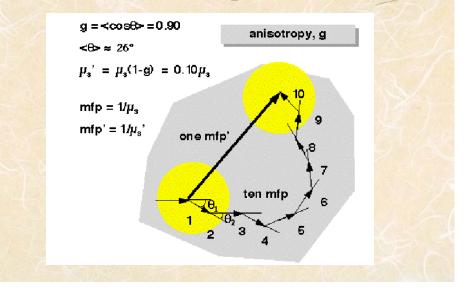
$$g = \int_{0}^{\pi} p(\theta) \cos \theta 2\pi \sin \theta d\theta = \langle \cos \theta \rangle, \text{ where } \int_{0}^{\pi} p(\theta) 2\pi \sin \theta d\theta = 1$$
$$g = \int_{-1}^{1} p(\cos \theta) \cos \theta d(\cos \theta), \text{ where } \int_{-1}^{1} p(\cos \theta) d(\cos \theta) = 1$$


Plotting p(θ) indicates how photons will scatter as a function of θ in a single plane of observation


Plotting p(θ) 2πsinθ indicates how photons will scatter as a function of the deflection angle θ regardless of the azimuthal angle ψ, in other words integrating over all possible ψ in an azimuthal ring of width dθ and perimeter 2πsinθ at some given θ.

Isotropic scattering

$$p(\theta) = \frac{1}{4\pi}$$
, such that $\int_{0}^{\pi} p(\theta) 2\pi \sin \theta d\theta = 1$


Reduced scattering coefficient

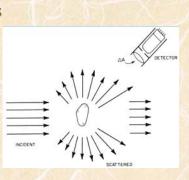
- $\mu_{s'} = \mu_s (1 g) [cm^{-1}]$
- The purpose of μ_{s'} is to describe the diffusion of photons in a random walk of step size of 1/μ_{s'} [cm] where each step involves isotropic scattering.
- This occurs if there are many scattering events before an absorption event, i.e., $\mu_a << \mu_{s'}$.
- This situation of scattering-dominated light transport is called the diffusion regime and $\mu_{s'}$ is useful in the diffusion regime which is commonly encountered when treating how visible and near-infrared light propagates through biological tissues.

Summary

- Optically tissue may be characterized by its
 - scattering, refractive index, and absorption.
- The scattering arises from
 - cell membranes, cell nuclei, capillary walls, hair follicles...
- The absorption arises from
 - visible and NIR wavelengths (400 nm 800 nm);
 - » hemoglobin and melanin,
 - IR wavelengths;
 - » water and molecular vibrational/rotational states.

Example

Importance of light scattering


Important because

- light propagation is affected by the tissue optical properties,
- the *physiological condition* or state of single cells or tissues is expressed through (but not exclusively) changes in cell size or refractive index,
- changes in refractive index or cell size influence the *optical properties*.

Therefore measurements or analysis of scattering provide information about the tissue.

Characteristic quantities

- Four important properties
- Cross section
 - absorption
 - scattering
 - extinction
- Angular dependence
 - scattering phase function

Cross sections

Scattering cross section

$$\sigma_{s} = \int_{4\pi} \sigma_{d} d\omega = \frac{\sigma_{t}}{4\pi} \int_{4\pi} p(\mathbf{s}, \mathbf{i}) d\omega$$

Absorption cross section

 σ_{a}

Back-scatter cross section

 $\sigma_b = 4\pi\sigma_d(-\mathbf{i},\mathbf{i})$

Extinction cross section

 $\sigma_t = \sigma_s + \sigma_a$

Albedo

$$W_0 = \frac{\sigma_s}{\sigma_s + \sigma_a} = \frac{\sigma_s}{\sigma_t}$$

Note: W_0 is close to zero for most tissues

 σ_b = differential scattering cross section

Scattering cases

- Size parameter $x = 2\pi a / (\lambda / n_{med})$
- Refractive index ratio $n_r = n_p/n_{med}$
- Rayleigh approximation
 - the particle a dipole, strength related to its volume
 - valid if a << 1 or until a is 5% of λ
 - proportional to λ^{-4}

Rayleigh scattering

Scattered intensity

$$I_{s} = \frac{8\pi^{4}Nr^{6}}{\lambda^{4}R^{2}} \left| \frac{n_{r}^{2} - 1}{n_{r}^{2} + 1} \right| (1 + \cos^{2}\theta)I_{i}$$

• where r = radius and $n_r = n_p/n_{med}$

Mie theory model for tissue optical properties

- Mie theory describes the scattering of light by particles, with refractive index (n_p) that differs from the refractive index of its surroundings (n_{med}).
- The dipole re-radiation pattern from oscillating electrons in the molecules of such particles superimpose to yield a strong net source of scattered radiation.
- Also, the re-radiation patterns from all the dipoles do not cancel in all but the forward direction of the incident light as is true for homogeneous medium, but rather interfere both constructively and destructively in a radiation pattern.
- Hence, particles "scatter" light in various directions with varying efficiency.

Mie

 Mie's classical solution is described in terms of two parameters, n_r and x:

• the magnitude of refractive index mismatch between particle and medium expressed as the ratio of the n for particle and medium,

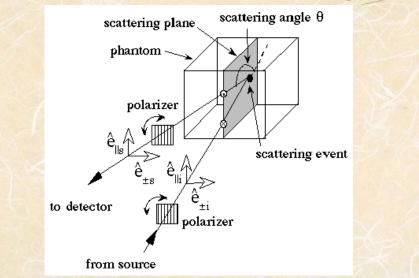
• the size of the surface of refractive index mismatch which is the "antenna" for reradiation of electromagnetic energy, expressed as a size parameter (x) which is the ratio of the meridional circumference of the sphere ($2\pi a$, where radius = a) to the wavelength (λ / n_{med}) of light in the medium,

 $x = 2\pi a / (\lambda / n_{med})$

Mie calculations

- A Mie theory calculation will yield the efficiency of scattering which relates the cross-sectional area of scattering, σ_s to the true geometrical cross-sectional area of the particle, $A = \pi a^2$
- $\sigma_s = Q_s A$
- Finally, the scattering coefficient is related to the product of scatterer number density, ρ_{s} , and the cross-sectional area of scattering, σ_{s}

 $\mu_{\rm s} = \rho_{\rm s} \sigma_{\rm s}$

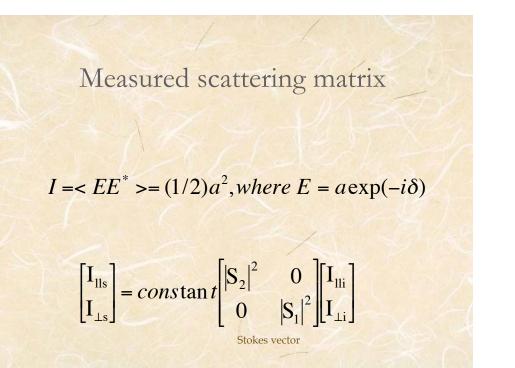

MIE scattering

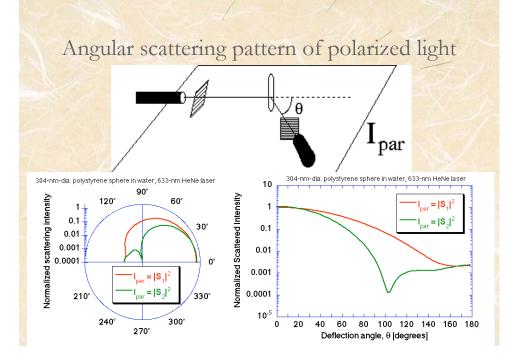
$$\{Q_s, p(\theta)\} = Mie(\frac{n_p}{n_{med}}, \frac{2\pi a}{\lambda/n_{med}})$$

$$\sigma_s = \mathbf{Q}_s \pi a^2$$

 $g = \frac{\int_{0}^{\pi} p(\theta) \cos \theta \cdot 2\pi \sin \theta d\theta}{\int_{0}^{\pi} p(\theta) \cdot 2\pi \sin \theta d\theta}$

The math of Mie scattering




Scattering matrix

 Describes the relationship between incident and scattered electric field components perpendicular and parallel to the scattering plane as observed in the "far-field"

$$\begin{bmatrix} \mathbf{E}_{11s} \\ \mathbf{E}_{\perp s} \end{bmatrix} = \frac{\exp(-ik(\mathbf{r} - \mathbf{z}))}{ik\mathbf{r}} \begin{bmatrix} \mathbf{S}_2 & \mathbf{S}_3 \\ \mathbf{S}_4 & \mathbf{S}_1 \end{bmatrix} \begin{bmatrix} \mathbf{E}_{11i} \\ \mathbf{E}_{\perp i} \end{bmatrix}$$

• The total field (E_{tot}) depends on the incident field (E_i) , the scattered field (E_s) , and the interaction of these fields (E_{int}) . If one observes the scattering from a position which avoids Ei, then both E_i and E_{int} are zero and only E_s is observed.

Mie scattering from cellular structures

- Soft tissue optics are dominated by the lipid content of the tissues.
- Mie theory provides a simple first approximation to the scattering of soft tissues
- The approximation involves a few assumptions:
 - Assume the refractive index of the lipid membranes of cells is 1.46, based on the reported
 - Assume the refractive index of the cytosol of cells is 1.35, based on the reported value for cellular cytoplasms
 - Assume the lipid content of soft tissue is about 1-10% (fv = 0.02-0.10).
 - Let's choose fv = 0.02 for this example to match the value for several typical soft tissues such as lungs, spleen, prostate, ovary, intestine, liver, arteries, to name a few.
 - Assume all the lipid is packaged as small spheres of various sizes whose number density maintains a constant volume fraction fv.
 - Ignore the interference of scattered fields from particles which can alter the apparent scattering properties based on isolated particles.

Summary Mie

• Mie theory

- direct solution to maxwell's equations with proper boundary conditions,
- only a few, simple cases with analyticl solutions.
- Scattering from sphere may be calculated exactly from Mie theory
 - solved in spherical coordinates,
 - assumes plane wave incidence

Summary optical properties

- A survey of all tissue types has not been completed.
 - A survey would only be a guideline since subject to subject variation and normal vs diseased variation apparently are sufficiently significant to warrant ad hoc measurements on any particular tissue site of interest. Other tissues may present different types of scattering than just the simple "soft tissue" and "dermis" models.
- Muscles have myoglobin and actin-myosin fibers.
- Brain has myelin sheaths around nerves.
- Fatty tissues are distinct in their properties. The scattering by the nucleus has been ignored here, but is a potential scattering site of clinical importance.