

Optical fiber bundle

Collection efficiency, f, depends on optical properties

$$f = 1 - (1 + \tanh(x))/2$$

where $x = A(\ln(\delta * mfp'/d^2) + B$
 $A = 0,310$
 $B = 1.38$

Calibration measurements of fluence rate, $F[W/cm^2]$

Insert in phantoms with known optical properties

Oxygenation and blood content

Observed fluence
$$F_{obs} = \int_{V} Exc * Conv * Esc * dV$$

PDT treatment

 $P_{th} = Etkb\varepsilon C\Phi \exp(-z_{necrosis}/\delta)$

E = irradiance	$\Phi = quantum yield for sin glet oxygen$
t = time	$z_{necrosis} = depth of necrosis$
k = backscatter factor	δ = penetration depth
b = photons per J energy	P_{th} = threshold radical production for necrosis
$\varepsilon = extinction coefficient$	
C = concentration	

