
Chapter 1

Introduction

The function of the human body is frequently associated with signals of elec-
trical, chemical, or acoustic origin. Such signals convey information which
may not be immediately perceived but which is hidden in the signal’s struc-
ture. This information has to be “decoded” or extracted in some way before
the signals can be given meaningful interpretations. The signals reflect prop-
erties of their associated underlying biological systems, and their decoding
has been found very helpful in explaining and identifying various pathologi-
cal conditions. The decoding process is sometimes straightforward and may
only involve very limited, manual effort such as visual inspection of the sig-
nal on a paper print-out or computer screen. However, the complexity of
a signal is often quite considerable, and, therefore, biomedical signal pro-
cessing has become an indispensable tool for extracting clinically significant
information hidden in the signal.

Biomedical signal processing represents an interdisciplinary topic. Know-
ledge of the physiology of the human body is crucial to avoid the risk of
designing an analysis method which distorts, or even removes, significant
information. It is also valuable to have a sound knowledge of other topics
such as anatomy, linear algebra, calculus, statistics, and circuit design.

Biomedical signal processing has, by some, been viewed as a stepping-
stone for developing diagnostic systems which offer fully automated analysis.
Some decades ago when computers first arrived in the area of medicine, au-
tomation was the overriding goal. However, this goal has been considerably
modified over the years, not only because of the inherent difficulties in devel-
oping such systems, but equally so because the physician must be ultimately
responsible for the diagnostic decisions taken. While fully automated anal-
ysis may be warranted in a few situations, today’s goal is rather to develop
computer systems which offer advanced aid to the physician in making well-
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founded decisions. In these systems biomedical signal processing has come
to play a very important role.

Research in biomedical signal processing has so far mainly been con-
cerned with the analysis of one particular signal type at a time (“unimodal
signal analysis”); a fact, which to a large extent, influences the content of
the present textbook. However, the emerging interest in multimodal signal
analysis will definitely help to explain, in more detail, how different physio-
logical subsystems interact with each other, such as the interaction between
blood pressure and heart rate in the cardiovascular system. By exploring the
mutual information contained in different signals, more qualified diagnostic
decisions can be made. The increased algorithmic complexity associated
with multimodal analysis is not a serious limitation since it will be met
by the rapid advancement of computer technology and the ever-increasing
computational speed.

1.1 Biomedical Signal Processing: Objectives and
Contexts

1.1.1 Objectives

Biomedical signal processing has many objectives, and some of the most
important ones are presented below. We also describe the main contexts in
which biomedical signal processing is applied. Other challenging objectives
and contexts can certainly be defined by those interested in pursuing a career
in this fascinating, interdisciplinary field.

Historically, biomedical signals have often been assessed visually, and
manual ruler-based procedures were developed to make sure that measure-
ments could be obtained in a standardized manner. However, it is well-
known that there is relatively poor concordance between manually obtained
measurements, and this may lead to unreliable diagnostic conclusions. A
fundamental objective of biomedical signal processing is therefore to reduce
the subjectivity of manual measurements. The introduction of computer-
based methods for the purpose of objectively quantifying different signal
characteristics is the result of a desire to improve measurement accuracy as
well as reproducibility.

In addition to reducing measurement subjectivity, biomedical signal pro-
cessing is used in its own right for developing methods that extract features
to help characterize and understand the information contained in a signal.
Such feature extraction methods can be designed to mimic manual measure-
ments, but are equally often designed to extract information which is not
readily available from the signal through visual assessment. For example,
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small variations in heart rate that cannot be perceived by the human eye
have been found to contain very valuable clinical information when quanti-
fied in detail using a suitable signal processing technique; see Chapter 8 for
more details on this particular topic. Although it is certainly desirable to
extract features that have an intuitive meaning to the physician, it is not
necessarily those features which yield the best performance in clinical terms.

In many situations, the recorded signal is corrupted by different types
of noise and interference, sometimes originating from another physiological
process of the body. For example, situations may arise when ocular ac-
tivity interferes with the desired brain signal, when electrodes are poorly
attached to the body surface, or when an external source such as the sinu-
soidal 50/60 Hz powerline interferes with the signal. Hence, noise reduction
represents a crucial objective of biomedical signal processing so as to mitigate
the technical deficiencies of a recording, as well as to separate the desired
physiological process from interfering processes. In fact, the desired signal is
in certain situations so dramatically masked by noise that its very presence
can only be revealed once appropriate signal processing has been applied.
This is particularly evident for certain types of transient, very low-amplitude
activity such as evoked potentials, which are part of brain signals, and late
potentials, which are part of heart signals.

Certain diagnostic procedures require that a signal be recorded on a long
timescale, sometimes lasting for several days. Such recordings are, for exam-
ple, routinely done for the purpose of analyzing abnormal sleep patterns or
to identify intermittently occurring disturbances in the heart rhythm. The
resulting recording, which often involves many channels, amounts to huge
data sizes, which quickly fill up hard disk storage space once a number of pa-
tients have been examined. Transmission of biomedical signals across public
telephone networks is another, increasingly important application in which
large amounts of data are involved. For both these situations, data compres-
sion of the digitized signal is essential and, consequently, another objective
of biomedical signal processing. General-purpose methods of data compres-
sion, such as those used for sending documents over the internet, do not
perform particularly well since the inherent characteristics of the biomedical
signal are not at all exploited. Better performance can be obtained by ap-
plying tailored algorithms for data compression of biomedical signals. Data
compression can also be understood in a wider sense as the process in which
clinical information from a long-term recording is condensed into a smaller
data set that is more manageable for the person analyzing the data. In this
latter sense, it is highly desirable to develop signal processing algorithms
which are able to determine and delimit clinically significant episodes.

Mathematical signal modeling and simulation constitute other important
objectives in biomedical signal processing which can help to attain a bet-
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ter understanding of physiological processes. With suitably defined model
equations it is possible to simulate signals which resemble those recorded
on the cellular level or on the body surface, thereby offering insight into the
relationship between the model parameters and the characteristics of the ob-
served signal. Examples of bioelectrical models include models of the head
and brain for localizing sources of neural activity and models of the thorax
and the heart for simulating different cardiac rhythms. Signal modeling is
also central to the branch of signal processing called “model-based signal
processing,” where algorithm development is based on the optimization of
an appropriately selected performance criterion. In employing the model-
based approach, the suggested signal model is fitted to the observed signal
by selecting those values of the model parameters which optimize the perfor-
mance criterion. While model-based biomedical signal processing represents
a systematic approach to the design of algorithms—to be frequently adopted
in the present textbook—it does not always lead to superior performance;
heuristic approaches may actually perform just as well and sometimes even
better. It is a well-known fact that many commercial, medical devices rely
on the implementation of ad hoc techniques in order to achieve satisfactory
performance.

The complexity of a signal model depends on the problem to be solved.
In most signal processing contexts, it is fortunately not necessary to develop
a multilevel model which accounts for cellular mechanisms, current propa-
gation in tissue, and other biological properties. Rather, it is often sufficient
to develop a “phenomenological” model which only accounts for phenomena
which are relevant to the specific problem at hand.

1.1.2 Contexts

The other purpose of this section is to point out the three major clinical
contexts in which algorithms for biomedical signal processing are designed,
namely, the contexts of

• diagnosis,

• therapy, and

• monitoring.

In the diagnostic context, medical conditions are identified from the ex-
amination of signal information, reflecting the function of an organ such
as the brain or the heart, in combination with other symptoms and clinical
signs. A signal is often acquired by a noninvasive procedure which makes the
examination less taxing on the patient. Most of these procedures are also
associated with inexpensive technology for acquisition and analysis, thus
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increasing the likelihood that the technology can be disseminated to coun-
tries with less developed economies. A diagnostic decision rarely requires
immediate availability of the results from signal analysis, but it is usually
acceptable to wait a few minutes for the analysis to be completed. Hence,
signal analysis can be done off-line on a personal computer, thus relying on
standardized hardware and operating system, possibly supplemented with
a digital signal processor (DSP) board for accelerating certain bottleneck
computations. Algorithms for biomedical signal processing do not define the
entire diagnostic computer system, but their scope ranges from performing
a simple filtering operation to forming a more substantial part of the clinical
decision-making.

Therapy generally signifies the treatment of disease and often involves
drug therapy or surgery. With regard to biomedical signal processing, ther-
apy may imply a narrower outlook in the sense that an algorithm is used to
directly modify the behavior of a certain physiological process, for example,
as the algorithms of a pacemaker do with respect to cardiac activity. In a
therapeutic context, an algorithm is commonly designed for implementation
in an implantable device like a heart defibrillator, and, therefore, it must,
unlike an algorithm operating in a diagnostic context, strictly comply with
the demands of on-line, real-time analysis. Such demands pose some serious
constraints on algorithmic complexity as well as on the maximal acceptable
time delay before a suitable action needs to be taken. Low power consump-
tion is another critical factor to be considered in connection with devices
that are implanted through a surgical procedure; for example, the battery of
an implantable device is expected to last up to ten years. Hence, algorithms
which involve computationally demanding signal processing techniques are
less suitable for use in a therapeutic context.

Biomedical signal processing algorithms form an important part of real-
time systems for monitoring of patients who suffer from a life-threatening
condition. Such systems are usually designed to detect changes in cardiac
or neurological function and to predict the outcome of a patient admitted
to the intensive care unit (ICU). Since such changes may be reversible with
early intervention, irreversible damage can sometimes be prevented. Similar
to therapeutic contexts, the signal is processed during monitoring in an es-
sentially sequential fashion such that past samples constitute the main basis
for a decision, while just a few seconds of the future samples may also be
considered—a property which usually stands in sharp contrast to signal pro-
cessing for diagnostic purposes, where the signal is acquired in its entirety
prior to analysis. Thus, a noncausal approach to signal analysis can only
be adopted in the diagnostic context which mimics that of a human reader
who interprets a signal by making use of both past and future properties.
Constraints need to be imposed on the algorithmic design in terms of max-
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imal delay time because the occurrence of a life-threatening event must be
notified to the ICU staff within a few seconds. Another important issue to
be considered is the implications of a clinical event that is missed by the
algorithm or the implications of a nonevent that is falsely detected causing
the staff to be notified.

1.2 Basics of Bioelectrical Signals

Although the scope of the present textbook is to present signal processing
techniques useful for the analysis of electrical signals recorded on the body
surface, it may still be well-motivated to consider the genesis of bioelectrical
signals from a cellular perspective. Bioelectrical signals are related to ionic
processes which arise as a result of electrochemical activity of a special group
of cells having the property of excitability. The mechanisms which govern
the activity of such cells are similar, regardless of whether the cells are part
of the brain, the heart, or the muscles. In particular, the electrical force
of attraction has central importance for the processing and transmission of
information in the nervous system, as well as for sustaining the mechanical
work done by the heart and the muscles. Since the origin of these voltages is
only briefly described below, the interested reader is referred to textbooks on
human physiology which offer a much more detailed description of the cellu-
lar aspects [1, 2]. The basic concepts introduced for mathematical modeling
of bioelectrical phenomena are described in [3], while more comprehensive
reading is found in [4–6].

1.2.1 On the Cellular Level

A cell is bounded by a plasma membrane which basically consists of lipid
layers with poor ability to conduct an electrical current. The membrane pos-
sesses permeability properties which allow certain substances to pass from
the inside of the cell to the outside through different channels, defined by
body fluids, while other substances remain blocked. Intracellular and extra-
cellular fluids mainly consist of water, which is electrically neutral; however,
the fluids become electrically conductive since they contain several types of
ions. The dominant ions in a nerve cell (neuron) are sodium (Na+), potas-
sium (K+), and chloride (Cl−). Other ions such as calcium (Ca2+) are also
present but play roles of varying importance depending on where the ex-
citable cell is located; the calcium ion is much more important in the cells
of the heart than in the nerves, for example.

Under resting conditions, the inside of a cell is negatively charged with
respect to the outside, and, therefore, a negative transmembrane potential
results since the outside is assumed to have zero voltage. The difference in
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charge is due to the fact that the concentration of negatively charged ions
inside the cell is higher than on the outside, whereas the opposite relation
applies to the concentration of positive ions. In addition to the difference
in ion concentration, the actual magnitude of the resting transmembrane
potential is also determined by the permeability of the membrane to the
different ions.

A potential arises when membrane channels open so that a certain ion
may diffuse across the membrane. This process can be illustrated by the
simplified situation in which potassium ions are assumed to be inside the
cell and sodium ions outside and when the initial transmembrane potential
is equal to zero. When the potassium channels are opened, an increase in
positive electrical charge outside the cell is created as a result of the diffusion
process; at the same time, the inside of the cell becomes increasingly negative
and a potential arises across the membrane. This electrical potential con-
stitutes the other force which causes ions to move across the membrane. As
the outside of the cell becomes increasingly positive, the resulting potential
will increasingly influence the outbound movement of potassium ions. The
ion movement ceases when the concentration force balances the electrical
force; an equilibrium potential is then said to have been reached. It should
be noted that some other active transport mechanisms, not considered here,
also come into play when a potential is created.

The resting transmembrane potential of a cell is determined by the equi-
librium potentials of the different ions involved and is thus not equal to any
of the equilibrium potentials of an individual type of ion. For the situation
considered above with open potassium channels, the equilibrium potential
for potassium in a nerve cell is found to be about −90 mV, while the equi-
librium potential for sodium—assuming instead open sodium channels—is
about +60 mV. The resting transmembrane potential is within the range of
−60 to −100 mV, depending on the type of cell.

When a cell is stimulated by a current, rapid alterations in membrane ion
permeability take place which give rise to a change in the membrane poten-
tial and generate a signal referred to as an action potential. The propagation
of action potentials is the very mechanism which makes the heart contract
and the nervous system communicate over short and long distances. The
stimulus current must exceed a certain threshold level in order to elicit an
action potential, otherwise the cell will remain at its resting potential. An
excited cell exhibits nonlinear behavior: once a stimulus intensity exceeds
the threshold level the resulting action potential is identical and indepen-
dent of intensity—the all-or-nothing principle. An action potential consists
mainly of two phases: depolarization during which the membrane potential
changes toward zero so that the inside of the cell becomes less negative, and
ultimately reverses to become positive, and repolarization during which the
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potential returns to its resting level so that the inside again becomes more
negative.

The membrane potential remains at its resting level until it is perturbed
by some external stimulus, such as a current propagating from neighbor-
ing cells. Depolarization is then initiated, and the membrane permeability
changes so that sodium channels are opened and the sodium ions can rush
into the cell. At the same time, potassium ions try to exit since these are
concentrated on the inside, but cannot, thereby causing the charge inside the
cell to become increasingly positive, and eventually the membrane potential
reverses polarity. Once the rush of sodium ions into the cell has stopped
and the membrane potential approaches the sodium equilibrium potential,
the peak amplitude of an action potential is reached. During repolarization,
sodium channels close and potassium channels open so that the membrane
potential can return to its resting, negative potential. The activity of a
potassium channel is illustrated in Figure 1.1.

The duration of an action potential varies much more than its amplitude:
the repolarization phase of a cardiac cell is much longer than the depolariza-
tion phase and lasts from 200 to 300 milliseconds, while for a neuron the two
phases combined only last for about one millisecond with both phases having
about the same duration. Figure 1.2 shows the action potentials for cells of
the brain (motor neuron), the skeletal muscle, and the heart. From these
waveforms, it can be observed that the cardiac action potential differs con-
siderably from the others in its lack of an immediate repolarization phase.
Instead, there is a plateau in the action potential because the membrane
channels of the different ions open and close at different speeds.

Once an action potential has been elicited, the membrane cannot imme-
diately respond to a new stimulus but remains in a “refractory” state for
a certain period of time. The refractory period is related to changes that
take place in sodium and potassium permeability of the membrane. Ob-
viously, the refractory period imposes an upper limit on the frequency at
which action potentials can be communicated through the nervous system
or the heart can beat.

The propagation of an action potential exhibits special behavior since
it travels a distance through the triggering of new action potentials rather
than by traveling itself along the membrane. The current created by the
initial membrane depolarization triggers an adjacent membrane so that a
new action potential results, and so on. This process repeats itself until the
membrane ends and delivers an action potential which is identical to the
initial action potential. Due to the refractory period, the action potential
travels away from membranes which recently have been excited and continues
to do so until it reaches a point on the membrane where the voltage is
insufficient for further stimulation.
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Figure 1.1: Cellular activity of potassium channels (which is similar for sodium
but the reverse). (a) Concentration distribution of potassium (K+), sodium (Na+),
and chloride (Cl−) ions inside and outside a cell. (b) The relationship between
chemical gradient and electrical gradient for K+ ions and K+ channels.

1.2.2 On the Body Surface

The ability of excitable cell membranes to generate action potentials causes
a current to flow in the tissue that surrounds the cells. With the tissue
being a conducting medium, commonly referred to as a volume conductor,
the collective electrical activity of many cells can be measured noninvasively
on the body surface [4–6]. The recording of a bioelectrical signal in clinical
practice is done by attaching at least two electrodes to the body surface. In
its simplest form, a signal is recorded by making use of two electrodes: the
“exploring” electrode, placed close to the electrical source, and the “indiffer-
ent” electrode, placed elsewhere on the body surface [7]. Multiple electrode
configurations are commonly used in clinical practice to obtain a spatial de-
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Figure 1.2: Examples of action potentials with shapes that range from the spike-
like waveform of a nerve cell (left) to the much more extended waveform of a cardiac
cell (right). The transmembrane potential difference was measured by placing one
microelectrode inside the cell and another outside. It should be noted that the
timescale differs from waveform to waveform.

scription of the bioelectrical phenomenon. Since the activity of excitable
cells is viewed from a distance by the electrodes, with different tissues in
between, such as blood, skeletal muscles, fat, and bone, it is impossible to
noninvasively determine detailed information about cellular properties and
propagation patterns. Nonetheless, significant empirical knowledge has over
the years been acquired from analyzing the patterns of signals recorded on
the body surface, which have been found crucial for clinical decision-making;
this observation constitutes an important motivation for the writing of the
present textbook.

The problem of characterizing the electrical source by noninvasive mea-
surements has, in spite of the above-mentioned limitations, been the subject
of considerable research due to the far-reaching clinical implications of its
potential solution. In order to arrive at a meaningful solution, it is necessary
to introduce a mathematical model in which the collective electrical cellular
activity is treated as a volume source, i.e., it is defined by a fixed dipole, a
multiple dipole, or some other source model. Furthermore, by introducing
a model for the volume conductor which accounts for essential properties of
the human body, such as geometry and resistivity, the electrical field mea-
sured on the body surface can be modeled. The important inverse problem
consists of determining the electrical source from measurements on the body
surface under the assumption that the geometry and electrical properties of
the volume conductor are known [5].
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1.2.3 Bioelectrical Signals

The present textbook deals with the processing of electrical signals that
describe the activity of the brain, the heart, and the muscles. Some of
these signals reflect spontaneous, ongoing activity, while others only occur
as the result of external stimulation. The properties of these signals call for
widely different processing techniques; an individual waveform can in some
signals be directly linked to a specific clinical diagnosis, while in other signals
the composite of many waveforms must be analyzed before a meaningful
interpretation can be made.

The electroencephalogram (EEG) reflects the electrical activity of the
brain as recorded by placing several electrodes on the scalp, see Figure 1.3(a).
The EEG is widely used for diagnostic evaluation of various brain disorders
such as determining the type and location of the activity observed dur-
ing an epileptic seizure or for studying sleep disorders. The brain activity
may also be recorded during surgery by attaching the electrodes directly to
the uncovered brain surface; the resulting invasive recording is named an
electrocorticogram (ECoG). The background to EEG signals is presented in
Chapter 2 and is then followed by Chapter 3 where different EEG signal
processing techniques are described.

Evoked potentials (EPs) constitute a form of brain activity which
usually is evoked by a sensory stimulus such as one of visual or acoustic
origin. Their clinical use includes the diagnosis of disorders related to the
visual pathways and the brainstem. An EP, also referred to as an event-
related potential, is a transient signal which consists of waves of such tiny
amplitudes that its presence in the “background EEG” is typically invisible
to the human eye, see Figure 1.4(a). Evoked potentials are recorded using
an electrode configuration similar to that of an EEG. Chapter 4 contains an
overview of methods developed for “revealing” EPs and for analyzing the
resulting signal waveform.

The electrocardiogram (ECG) reflects the electrical activity of the
heart and is obtained by placing electrodes on the chest, arms, and legs, see
Figure 1.3(b). With every heartbeat, an impulse travels through the heart
which determines its rhythm and rate and which causes the heart muscle to
contract and pump blood. The ECG represents a standard clinical procedure
for the investigation of heart diseases such as myocardial infarction. The
electrogram (EG) is an intracardiac recording where the electrodes have been
placed directly within the heart; the EG signal is used in implantable devices
such as pacemakers and defibrillators. The background to ECG signals is
presented in Chapter 6, while Chapters 7 and 8 present different ECG signal
processing techniques.
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Figure 1.3: Examples of the three major bioelectrical signals recorded from the
body surface: (a) an electroencephalogram (EEG) containing alpha activity, (b) an
electrocardiogram (ECG) during sinus rhythm, and (c) an electromyogram (EMG)
obtained from the chin in the waking state. All three signals were obtained from
different normal subjects.

The electromyogram (EMG) records the electrical activity of skeletal
muscles which produce an electrical current, usually proportional to the
level of activity, see Figure 1.3(c). The EMG is used to detect abnormal
muscular activity which occurs in many diseases such as muscular dystrophy,
inflammation of muscles, and injury to nerves in arms and legs. Recording
the surface EMG involves placing the electrodes on the skin overlying the
muscle, whereas the intramuscular EMG involves inserting needle electrodes
through the skin into the muscle to be examined. Chapter 5 presents an
overview of EMG signal processing techniques.

Some other types of bioelectrical signals also deserve mentioning although
their related signal analysis will not be further considered in the present
textbook.

The electroneurogram (ENG) results from the stimulation of a periph-
eral nerve with an electric shock such that the response along the nerve can
be measured. The ENG, usually acquired with needle electrodes, is used
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Figure 1.4: Examples of bioelectrical signals resulting from stimulation. (a) An
evoked potential (EP) resulting from auditory stimulation (the brainstem response).
The displayed signal is actually the result of averaging several responses in order
to reduce the high noise level of the original signal; see Section 4.3 for details on
noise reduction. (b) An electroneurogram (ENG) recorded at two electrode loca-
tions, where the delay between the two signals is used to estimate nerve conduction
velocity. (c) An electroretinogram (ERG) obtained during stimulation with a flash
of light.

to determine the conduction velocity of the nerve, thereby assisting in the
diagnosis of nerve injury. By stimulating a nerve at two different sites sep-
arated by a well-defined distance, it is possible to estimate the conduction
velocity from the distance by which the resulting two signal waveforms are
separated, see the example in Figure 1.4(b). The ENG can be measured
both invasively and noninvasively.

An electroretinogram (ERG) is used for studying the electrical poten-
tials generated by the retina of the eye during light stimulation [8, 9], see
Figure 1.4(c). The ERG is recorded by placing the exploring electrode, en-
capsulated in a contact lens, on the cornea. The ERG has been found useful
for assessing the electrical response of the rods and cones, i.e., the visual
cells at the back of the retina. A normal ERG shows appropriate responses
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with increased light intensity, while an abnormal ERG is obtained in condi-
tions such as arteriosclerosis of the retina or detachment of the retina. The
algorithms described in Chapter 4 for signal processing of EPs are, by and
large, also applicable to the analysis of ERGs.

The electrooculogram (EOG) is the recording of the steady corneal–
retinal potential which is proportional to vertical and horizontal movements
of the eye, thus offering an objective way to quantify the direction of the
gaze [5, 10], see Figure 1.5(a). The EOG is of particular interest in pa-
tients who suffer from sleep disorders, where the presence of rapid eye move-
ment (REM) is important for determining certain sleep stages. The EOG is
recorded when studying nystagmus, i.e., a rapid, involuntary oscillation of
the eyeballs, for example, in patients suffering from vertigo and dizziness.
The EOG is also useful in virtual reality environments where a device for
eye-tracking may be needed. The EOG is briefly touched upon in Chapter 3
in connection with EEG signal processing since the electrical activity caused
by eye movements often interferes with the EEG and, therefore, needs to be
cancelled.

The electrogastrogram (EGG) is a recording of the impulses which prop-
agate through the muscles of the stomach and which control their contrac-
tions [11], see Figure 1.5(b). The EGG is studied when the muscles of the
stomach or the nerves controlling the muscles are not working normally, for
example, when the stomach does not empty food normally. The EGG is
recorded by attaching a number of electrodes over the stomach during fast-
ing and subsequent to a meal. In normal individuals a regular “rhythmic”
signal is generated by the muscles of the stomach, having an amplitude which
increases after a meal; the normal frequency of the gastric rhythm is approx-
imately 3 cycles/minute. However, in symptomatic patients the rhythm is
often irregular and sometimes without the increase in amplitude that follows
a meal. A small selection of papers describing technical means of analyzing
the EGG signal can be found in [12–16].

1.3 Signal Acquisition and Analysis

The acquisition of bioelectrical signals is today accomplished by means of
relatively low-cost equipment which appropriately amplifies and digitizes the
signal. As a result, several clinical procedures based on bioelectrical signals
are in widespread use in hospitals around the world. In many situations,
PC-based systems can be utilized as an efficient and cost-effective solution
for signal analysis, especially considering the availability of expansion cards
for data acquisition. Such a system includes one or several sensors, exter-
nal hardware for patient insulation and signal amplification, an acquisition
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Figure 1.5: Recordings which exemplify (a) an electrooculogram (EOG) of the
right eye and (b) an electrogastrogram (EGG). Note that the two timescales differ.

card with analog/digital (A/D) conversion, and software for signal analy-
sis (Figure 1.6) [17]. In situations where the analysis is performed in an
implantable device, the system design involves additional considerations,
e.g., those related to the design of application-specific integrated circuitry
and the selection of appropriate battery technology.

In the digitization process, it is usually sufficient to use 12–14 bits for
amplitude quantization in order to cover the dynamic range of a signal;
it is presumed that very slow, large-amplitude drift in the direct current
(DC) level has been removed prior to quantization without modifying the
physiological content of the signal. The amplitude of individual bioelectri-
cal waveforms ranges from 0.1 µV, observed in certain types of EPs once
subjected to noise reduction, to several millivolts, as observed in the ENG,
ECG, and EOG.

Most bioelectrical signals recorded on the body surface have a spectral
content confined to the interval well below 1 kHz, and thus the sampling
rate—chosen to be at least the Nyquist rate—rarely exceeds a few kilohertz.
However, since signals measured on the body surface are subjected to lowpass
filtering caused by the intermediate tissue, invasively recorded signals, such
as those on action potentials, generally exhibit a much higher frequency
content.

In a PC-based system, signal analysis is often done locally by relying ei-
ther on the internal CPU or an expansion digital signal processor (DSP) card.
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Figure 1.6: Block diagram describing the main steps in biomedical signal analysis.
The signal is often processed at the time of its acquisition, but may also be stored
on a local hard disk or a server on the web for later retrieval and processing.

However, with today’s availability of web-based resources, it is no longer nec-
essary to perform the entire signal analysis locally. It is equally possible to
acquire the signal at one physical location, using the PC-based system, and
then to process it at another location, i.e., relying on a client/server solu-
tion [18]. Since the acquired signal in most cases is stored in a database that
resides on a server, it can be advantageous to also process the signal on the
server since it may offer more computational power.

1.4 Performance Evaluation

Performance evaluation is an important and challenging part of biomedical
signal processing required before any algorithm can be implemented in a
clinical context. Unlike many other engineering applications where the in-
formation in the signal source is known a priori, the message “sent” by a
bioelectrical source is unknown and has to be unmasked in some manual way
in order to render performance evaluation possible. For example, the eval-
uation of an algorithm for detecting heartbeats is relatively straightforward
since it is an easy task for a physician to determine the times of occurrence of
the heartbeats; the performance figures would then be designed to reflect how
well the output of the algorithm agrees with the manually obtained times of
occurrence. The performance evaluation becomes much more complicated
when the goal is to develop an algorithm that computes a parameter set
which accurately discriminates signals obtained from healthy subjects and
patients who suffer from a particular disease. In such cases, an assessment of
the output of the algorithm cannot be carried out simply because the “truth”
cannot be retrieved from the observed signal. Instead, the performance may
be evaluated in terms of its ability to correctly discriminate between the two
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Table 1.1: Definitions of the performance measures sensitivity, specificity, positive
predictive value, and negative predictive value.

Performance measure Definition Interpretation

Sensitivity NTP
NTP + NFN

The probability of a positive
result for the diseased subjects

Specificity NTN
NFP + NTN

The probability of a negative
result for the healthy subjects

Positive predictive value NTP
NTP + NFP

The probability of disease when
the result is positive

Negative predictive value NTN
NFN + NTN

The probability of health when
the result is negative

NTP = the number of diseased subjects with a positive result (True Positive)

NTN = the number of healthy subjects with a negative result (True Negative)

NFN = the number of diseased subjects with a negative result (False Negative)

NFP = the number of healthy subjects with a positive result (False Positive)

groups of healthy and diseased subjects. The most commonly used perfor-
mance measures for describing such discrimination are those of sensitivity,
specificity, positive predictive value, and negative predictive value, whose
definitions are given in Table 1.1.

It has been pointed out that “while new analytic technologies seem very
promising when they are first applied, the initial glitter often fades when the
method is systematically evaluated” [19]. This statement not only underlines
the importance of performance evaluation, but also that a great deal of effort
must be devoted to algorithm development before satisfactory performance
can be achieved.

1.4.1 Databases

The availability of signal databases is of vital importance for both develop-
ment and evaluation of signal processing algorithms. The immense diversity
of waveform patterns which exists among subjects necessitates evaluation
of the algorithm on a database of considerable size before its performance
can be judged as satisfactory for use in a clinical setting. Needless to say,
one part of a database must be used for algorithm development, while the
remaining part is kept for performance evaluation in order to assure that no
learning of the evaluation data has taken place.



18 Chapter 1. Introduction

The word “database” is here interpreted as a collection of signals that
has been obtained using the same recording protocol from suitably selected
groups of healthy subjects and patients. A database often includes signals
of one particular type, such as EEGs or ECGs, but may just as well in-
clude other types of concurrently recorded signals. Annotations are another
important type of database information which define the time instants at
which certain events occur in the signal, such as the presence of heartbeats
or epileptic seizures. The annotations may also account for more complex
signal properties as well as for nonphysiological information such as the
presence of noise episodes and technical deficiencies due to poorly attached
electrodes (Figure 1.7). The annotations are determined manually by one or
several physicians who must carefully scrutinize the signal with respect to the
properties to be annotated. The inclusion of several annotators generally im-
plies that more reliable annotations are obtained. However, it is inevitable
that discrepancies arise among the annotators which must be resolved by
consensus, thus adding further labor to an already laborious process.

In addition to the signal and its annotation, the database may include
additional information on subjects such as gender, race, age, weight, medi-
cation, and data from other clinical procedures which may be valuable when
evaluating performance.

A substantial number of databases have been collected over the years for
the purpose of addressing various clinical issues. The MIT–BIH arrhythmia
database is the most widely used database for evaluation of methods designed
for detecting abnormalities in cardiac rhythms and is almost certainly also
the most popular database overall in biomedical signal processing [21, 22].
The MIT–BIH arrhythmia database contains ECG signals which have been
recorded during ambulatory conditions such as working and eating. Another
widely used ECG database is the AHA database, which was developed for
evaluation of ventricular arrhythmia detectors [23]. More recent additions to
the list of databases include the European ST–T and LTST databases, which
were collected for the purpose of investigating the occurrence of insufficient
blood supply to the cardiac muscle cells (myocardial ischemia) [20, 24]. An
interesting adjunct to the MIT–BIH arrhythmia database is the MIT–BIH
noise stress test database which contains several recordings of noise typically
encountered in ambulatory conditions: by adding a calibrated amount of
noise to a “clean” ECG signal, the noise immunity of an algorithm can be
tested with this database [25].

Multimodal databases have also been collected and may include signals
that reflect brain activity, heart activity, muscle activity, blood pressure,
respiration, as well as other types of activity, see Figure 1.8. Some examples
are the MIMIC database [26], the IMPROVE database [27], and the IBIS
database [28, 29], which all contain continuously recorded data obtained
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Figure 1.7: Example of a manually annotated, two-channel ECG from a patient
with myocardial ischemia. The sequence of short, vertical bars shows the times of
occurrence of the heartbeats, and the related labels “N” and “V” indicate whether
the beat is of normal or ventricular origin. The three longer bars indicate the onset
of a new rhythm (VT: ventricular tachycardia, N: sinus rhythm, and AST1-300:
maximum ST depression of –300 µV). The signal was taken from the European
ST–T database [20].

from intensive care monitoring, while other databases have been collected
for investigating sleep disorders [30, 31]. Most databases described in the
literature are publicly available, either at no cost or at a charge, while some
remain the private property of those who collected the data. Databases of
biomedical signals have proven to be equally valuable for researchers and
instrument manufacturers.

The increasing availability of databases certainly makes it more conve-
nient and less time-consuming to pursue projects on algorithm development.
Because of the easy access to databases, now available on different sites on
the World Wide Web, it is possible to develop and evaluate signal processing
algorithms without having to deal with the cumbersome and often labor-
intensive task of data collection. The PhysioNet (www.physionet.org) is a
website which constitutes a tremendous leap forward, being a resource where
various types of physiological signals are freely available for download [32].
The PhysioNet maintains different classes of databases, ranging from those
which are carefully scrutinized and thoroughly annotated to those which are
unannotated and sometimes not yet completely acquired.
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Figure 1.8: Concurrently recorded signals from a multimodal database, from
top to bottom: ECG, blood pressure, EEG, nasal respiration, abdominal respi-
ration, EOG, and EMG. This type of recording is used for studying sleep disorders,
see Section 2.4.2. The signals were taken from the MIT–BIH polysomnographic
database [30].

With the easy availability of databases comes also the potential risk of
omitting medical expertise from projects since hospital-based activities are
no longer needed. If the worst comes to the worst, a lack of clinically experi-
enced eyes may lead to the introduction of clinically unacceptable distortion
into the signal via the algorithm, rather than improving its interpretation.
Hence, it is always important for the project’s outcome to establish a vi-
able liaison between engineers and physicians. Another potential risk when
downloading a database is that its original clinical purpose is tweaked into



Section 1.4. Performance Evaluation 21

answering questions for which the database was never intended. In cases
when no suitable database is available, it is necessary to develop an appro-
priate recording protocol for data collection of one’s own and then, of course,
to perform the actual signal acquisition. Anyone embarking on a project in
biomedical signal processing is, in addition to considering the use of avail-
able databases, strongly encouraged to also deal with the details of collecting
signals.

1.4.2 Simulation

A simulation describes quantitatively some physiological behavior by math-
ematical equations and is used to replicate signals which are generated in
the body. An advantage of simulations is the possibility to investigate con-
ditions which are difficult to deal with experimentally. Another advantage,
of particular relevance for algorithmic performance evaluation, is that the
properties of a simulated signal can be exactly controlled by a set of pa-
rameters. As a result, the agreement between the “true” parameter values
of the simulated signal and those determined by an estimation method can
be quantitatively assessed and expressed in terms of a suitable performance
measure. The exact definition of such a measure depends on the case at
hand and may involve rates of missed events and false events in detection
problems and bias and variance in parameter estimation problems.

Signal modeling and simulation are intimately linked together because a
simulation is based on an existing model. Models producing highly realistic-
looking signals are often associated with high complexity and do not easily
lend themselves to parameter estimation. Simpler models, which can only
account for a partial phenomenon of the signal, are still very useful for
algorithm development and have, in fact, often been considered.

In biomedical signal processing, a model of the physiological, “clean”
signal is often accompanied by a model of the noise sources, and the com-
bination of the two models makes it possible to simulate signals observed
on the body surface. The term “noise” is here used in a wide sense which
includes physiological activities other than the one under study which may
interfere with the desired signal. Simulated signals with different signal-
to-noise ratios (SNRs) can be easily produced using this approach. While
performance evaluation is mostly concerned with accuracy, i.e., the differ-
ence between the true value and the estimated value, it is also important to
study the reproducibility of an algorithm. Reproducibility is the ability of an
algorithm to produce repeated measurements which cohere, obviously under
the assumption that the same signal conditions apply to all measurements.
Although reproducibility is best investigated by sequentially repeating an
experiment on the same patient, simulated signals represent a powerful and
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much more manageable means of evaluating the reproducibility of an algo-
rithm. The performance is then evaluated by using the algorithm to process
a series of simulated signals, each time by adding a different noise realization
to the clean signal.

In addition to simulations based on mathematical models for both signal
and noise, it may in certain cases be appropriate to evaluate the performance
by employing simulated signals to which “real world” noise is instead added.
The reverse situation with “real world” signals and simulated noise may
sometimes also be of interest.

We conclude this section by noting that the simulation approach repre-
sents a useful step in algorithm development, provided of course that the
signal model is adequate. However, databases consisting of collected signals
must constitute the lion’s share of the evaluation work so that the clinical
utility of an algorithm can be thoroughly established.
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